‘ SECOND EDITION

FUNDAMENTALS OF

Randy Connolly
‘P Pearson Ricardo Hoar

SECOND EDITION

FUNDAMENTALS OF

Web Development

Randy Connolly
‘P Pearson Ricardo Hoar

Fundamentals of Web Development

Second Edition

Fundamentals of Web Development

Second Edition

Randy Connolly

Mount Royal University, Calgary
Ricardo Hoar

Sheridan College Institute of Technology and Advanced Learning, Oakville

@ Pearson

330 Hudson Street, NY NY 10013

Senior Vice President, Portfolio Management, Engineering and Computer
Science: Marcia Horton

Director, Portfolio Management: Julian Partridge
Executive Portfolio Manager: Matt Goldstein

Portfolio Management Assistant: Kristy Alaura

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Managing Producer: Scott Disanno

Content Producer: Erin Ault

Operations Specialist: Maura Zaldivar-Garecia

Text Designer: Jerilyn Bockorick, Cenveo Publisher Services
Cover Designer: Joyce Wells

Manager, Rights and Permissions: Ben Ferrini

Cover Art: Randy Connolly

Media Project Manager: Renata Butera

Full-Service Project Management: Louise Capulli
Composition: Cenveo Publisher Services

Interior Printer/Bindery: Lake Side Communications, Inc.

Cover Printer: Phoenix Color/Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced,
with permission, in this textbook appear on appropriate page within text.

© Microsoft Corporation. Used with permission from Microsoft.
MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THE
INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED
GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY
PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE
PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND.
MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY
DISCLAIM ALL WARRANTIES AND CONDITIONS OF
MERCHANTABILITY, WHETHER EXPRESS, IMPLIED, OR
STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR
ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF
INFORMATION AVAILABLE FROM THE SERVICES. THE
DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN
COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS
RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY
BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION
SPECIFIED.

Copyright © 2018, 2015 Pearson Education, Inc., 221 River Street, Hoboken,
NJ 07030. All Rights Reserved. Manufactured in the United States of
America. This publication is protected by copyright, and permission should
be obtained from the publisher prior to any prohibited reproduction, storage
in a retrieval system, or transmission in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise. For information
regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions department, please visit

www.pearsoned.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing
this book. These efforts include the development, research, and testing of
theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential
damages with, or arising out of, the furnishing, performance, or use of these
programs.

Library of Congress Cataloging-in-Publication Data
Names: Connolly, Randy, author. | Hoar, Ricardo, author.
Title: Fundamentals of web development / Randy Connolly, Mount Royal

University, Calgary; Ricardo Hoar, Sheridan College Institute of
Technology and Advanced Learning, Oakville

Description: 2 [edition]. | Includes

bibliographical references and index.
Identifiers: LCCN 2016054661| ISBN 9780134481265 | ISBN 0134481267
Subjects: LCSH: Web site development.

Classification: LCC TK5105.888 .C658 2017 | DDC 006.7—dc23 LC record
available at https://Iccn.loc.gov/2016054661

http://www.pearsoned.com/permissions/
https://lccn.loc.gov/2016054661

117
ISBN 10: 0-13-448126-7

ISBN 13: 978-0-13-448126-5

@ Pearson

To the children in my life: Ben, Alex, Hannah, and Mark.
Randy Connolly
To every student working to build a better world

Ricardo Hoar

Brief Table of Contents

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Chapter 1 Introduction to Web Development 1

Chapter 2 How the Web Works 39

Chapter 3 Introduction to HTML 69

Chapter 4 Introduction to CSS 117

Chapter 5 HTML Tables and Forms 171

Chapter 6 Web Media 209

Chapter 7 Advanced CSS: Layout 252

Chapter 8 JavaScript 1: L.anguage Fundamentals 322

. Chapter 9 JavaScript 2: Using JavaScript 391

Chapter 10 JavaScript 3: Extending JavaScript with jQuery 439

Chapter 11 Introduction to Server-Side Development with PHP 492

Chapter 12 PHP Arrays and Superglobals 538
Chapter 13 PHP Classes and Objects 584

Chapter 14 Working with Databases 624

Chapter 15 Error Handling and Validation 695

Chapter 16 Managing State 735

Chapter 17 Web Application Design 771

Chapter 18 Security 814

19.

20.

21.

22.

23.

24.

Chapter 19 XML Processing and Web Services 872

Chapter 20 JavaScript 4: Frameworks 932

Chapter 21 Content Management Systems 973

Chapter 22 Web Server Administration and Virtualization 1030

Chapter 23 Search Engines 1076

Chapter 24 Social Networks and Analytics 1116

Table of Contents

1. Preface xxxiii

2. Acknowledgments xlI

1. Chapter 1 Introduction to Web Development 1

1. 1.1 A Complicated Ecosystem 2

2. 1.2 Definitions and History 3

1. A Short History of the Internet 4

2. The Birth of the Web 6

3. Web Applications in Comparison to Desktop Applications 8

4. Static Websites versus Dynamic Websites 10

5. Web 2.0 and Beyond 12

6. Sociotechnological Integration—Web Science 13
3. 1.3 The Client-Server Model 14

1. The Client 15

2. The Server 15

3. The Request-Response L.oop 15

4. The Peer-to-Peer Alternative 16

5. Server Types 16

6. Real-World Server Installations 18

3.

4.

1.4 Where Is the Internet? 21

1. From the Computer to the L.ocal Provider 22

2. From the Local Provider to the Ocean's Edge 24

3. Across the Oceans 27

1.5 Working in Web Development 28

1. Roles and Skills 29

2. Types of Web Development Companies 33

. 1.6 Chapter Summery 37

Key Terms 37

Review Questions 37

References 38

2. Chapter 2 How the Web Works 39

1.

2.

2.1 Internet Protocols 40

1. A Layered Architecture 40

2. Link Layer 41

3. Internet Layer 41

4. Transport Layer 43

5. Application Layer 43

2.2 Domain Name System 46

1. Name Levels 47

2.

3.

Name Registration 49
Address Resolution 51

3. 2.3 Uniform Resource L.ocators 54

1.

2.

3.

4.

5.

6.

Protocol 54

Domain 55

e,
1

ort

U1

ath

=

Query String 56
Fragment 56

4. 2.4 Hypertext Transfer Protocol 56

1.

2.

3.

Headers 57

Request Methods 59

Response Codes 60

5. 2.5 Web Browsers 62

1.

2.

3.

Fetching a web page 62

Browser Rendering 63

Browser Caching 63

4. Browser features 64

5.

Browser Extensions 64

6. 2.6 Web Servers 65

1. Operating Systems 65
2. Web Server Software 66

3. Database Software 66

4. Scripting Software 67

1. 2.7 Chapter Summary 67
2. Key Terms 67

3. Review Questions 68

4. References 68

3. Chapter 3 Introduction to HTML 69

1. 3.1 What Is HTML and Where Did It Come from? 70

1. XHTML 72
2. HTML5 74

2. 3.2 HTML Syntax 76

1. Elements and Attributes 76

2. Nesting HTML Elements 77

3. 3.3 Semantic Markup 78

4. 3.4 Structure of HTML Documents 80

1. DOCTYPE 82

2. Head and Body 83

5. 3.5 Quick Tour of HTML Elements 84

1. Headings 84

2. Paragraphs and Divisions 86

3. Links 88

4. URL Relative Referencing 91

5. Inline Text Elements 94

mages 94

7. Character Entities 95

8. Lists 96

6. 3.6 HTML5 Semantic Structure Elements 97

1. Header and Footer 97

2. Navigation 100

3. Main 101

4. Articles and Sections 101

5. Figure and Figure Captions 103
6. Aside 105
7. Details and Summary 105

1. 3.7 Chapter Summary 111
2. Key Terms 112

3. Review Questions 112

4. Hands-On Practice 113

4. Chapter 4 Introduction to CSS 117

1. 4.1 What Is CSS? 118

1. Benefits of CSS 118

2. CSS Versions 118

3. Browser Adoption 119

2. 4.2 CSS Syntax 120

1. Selectors 121

2. Properties 121

3. Values 122

3. 4.3 Location of Styles 125

1. Inline Styles 125

2. Embedded Style Sheet 126
3. External Style Sheet 126

4. 4.4 Selectors 127

1. Element Selectors 128

2. Class Selectors 128

3. Id Selectors 130

4. Attribute Selectors 132

5. Pseudo-Element and Pseudo-Class Selectors 134

6. Contextual Selectors 136

5. 4.5 The Cascade: How Styles Interact 138

1. Inheritance 13

2. Specificity 138
3. Location 141

6. 4.6 The Box Model 144

1. Background 145
2. Borders 146

3. Margins and Padding 147

4. Box Dimensions 149

7. 4.7 CSS Text Styling 156

1. Font Family 156
2. Font Sizes 158

3. Paragraph Properties 162

1. 4.8 Chapter Summary 164
2. Key Terms 164

3. Review Questions 165

4. Hands-On Practice 165

5. References 170

5. Chapter 5 HTML Tables and Forms 171

1. 5.1 Introducing Tables 172

1. Basic Table Structure 172

2. Spanning Rows and Columns 173
3. Additional Table Elements 173

4. Using Tables for Layout 176

2. 5.2 Styling Tables 178

1. Table Borders 178

2. Boxes and Zebras 180

3. 5.3 Introducing Forms 181

1. Form Structure 182

2. How Forms Work 182

3. Query Strings 183
4. The <form> Element 184

4. 5.4 Form Control Elements 186

1. Text Input Controls 186

2. Choice Controls 190

3. Button Controls 192

4. Specialized Controls 192
5. Date and Time Controls 195

5. 5.5 Table and Form Accessibility 196

1. Accessible Tables 198

2. Accessible Forms 199

6. 5.6 Microformats 200

1. 5.7 Chapter Summary 203
2. Key Terms 203

3. Review Questions 204

4. Hands-On Practice 204

6. Chapter 6 Web Media 209

1. 6.1 Digital Representations of Images 210

2. 6.2 Color Models 214

1. RGB 214

2. CMYK 215

4. Opacity 218

5. Gradients 218

6. Color Relationships 220

3. 6.3 Image Concepts 222
1. Color Depth 222

2. Image Size 223

3. Display Resolution 228

4. 6.4 File Formats 231

3.

4.

4.

S.

Other Formats 239

6.5 Audio and Video 240

1.

2.

3.

Media Concepts 241

Browser Video Support 242

Browser Audio Support 244

. 6.6 Chapter Summary 247

Key Terms 247

Review Questions 247

Hands-On Practice 248

7. Chapter 7 Advanced CSS: Layout 252

1. 7.1 Normal Flow 253

2. 7.2 Positioning Elements 256

1. Relative Positioning 256

2. Absolute Positioning 257

3.

4.

Z-Index 259

Fixed Position 261

3. 7.3 Floating Elements 264

1. Floating within a Container 265

2. Floating Multiple Items Side by Side 266

3. Containing Floats 267

4. QOverlaying and Hiding Elements 270

4. 7.4 Constructing Multicolumn Layouts 274
1. Using Floats to Create Columns 274
2. Using Positioning to Create Columns 277

3. Using Flexbox to Create Columns 279
5. 7.5 Approaches to CSS Layout 284

1. Fixed Layout 284

2. Liquid Layout 284

6. 7.6 Responsive Design 285

1. Setting Viewports 289
2. Media Queries 290

3. Scaling Images 295

7. 7.7 Filters, Transitions, and Animations 295

1. Filters 296

2. Transitions 298

3. Animations 302

8. 7.8 CSS Frameworks and Preprocessors 305

1. CSS Frameworks 305

2. CSS Preprocessors 311

1. 7.9 Chapter Summary 315
2. Key Terms 315

3. Review Questions 315

4. Hands-On Practice 316

5. References 321

8. Chapter 8 JavaScript 1: L.anguage Fundamentals 322
1. 8.1 What is JavaScript and What Can It Do? 323

1. Client-Side Scripting 324

2. JavaScript's History 328

3. JavaScript and Web 2.0 328

4. JavaScript in Contemporary Software Development 329

2. 8.2 Where Does JavaScript Go? 330

1. Inline JavaScript 331

2. Embedded JavaScript 331

3. External JavaScript 332

4. Advanced Inclusion of JavaScript 333

5. Users without JavaScript 333

. 8.3 Variables and Data Types 336

1. Data Types 338

2. Reference Types 340

. 8.4 JavaScript Output 341

. 8.5 Conditionals 343

1. Truthy and Falsy 346

. 8.6 Loops 347

1. While and do ... while L.oops 347

2. For Loops 348

. 8.7 Arrays 348

. 8.8 Objects 352

1. Object Creation—Object Literal Notation 353

2. Object Creation—Constructed Form 354

. 8.9 Functions 356

1. Function Declarations vs. Function Expressions 356

2. Nested Functions 359

3. Hoisting in JavaScript 360
4. Callback Functions 361

5. Objects and Functions Together 364

6. Scope in JavaScript 365

7. Function Constructors 377

10. 8.10 Object Prototypes 379

1. Using Prototypes 380

2. Using Prototypes to Extend Other Objects 382

1. 8.11 Chapter Summary 385
2. Key Terms 385

3. Review Questions 386

4. Hands-On Practice 386

5. Works Cited 390

9. Chapter 9 JavaScript 2: Using JavaScript 391

1. 9.1 The Document Object Model (DOM) 392

1. Nodes and NodeLists 393

2. Document Object 393

3. Selection Methods 394

4. Element Node Object 397

2. 9.2 Modifying the DOM 399

1. Changing an Element's Style 399

2. Changing an Element's Content 401

3. Creating DOM Elements 402

4. DOM Timing 405

3. 9.3 Events 408

1. Event-Handling Approaches 408

2. Event Object 411

4. 9.4 Event Types 415

1. Mouse Events 415

2. Keyboard Events 415

3. Touch Events 416

4. Form Events 417

5. Frame Events 421

5. 9.5 Forms 421

1. Responding to Form Movement Events 423

2. Responding to Form Changes Events 424

3. Validating a Submitted Form 424

4. Submitting Forms 428

1. 9.6 Chapter Summary 433
2. Key Terms 433

3. Review Questions 433

4. Hands-On Practice 434

5. Works Cited 438

10. Chapter 10 JavaScript 3: Extending JavaScript with jQuery 439

. 10.1 jQuery Foundations 440

1. Including jQuery 441

2. jQuery Selectors 442

3. Common Element Manipulations in jQuery 447
. 10.2 Event Handling in jQuery 450

1. Binding and Unbinding Events 451

2. Page Loading 452

. 10.3 DOM Manipulation 453

1. Creating Nodes 453
2. Adding DOM Elements 454

3. Wrapping Existing DOM in New Tags 456
. 10.4 Effects and Animation 45

1. Animation and Effects Shortcuts 459
2. Raw Animation 461

. 10.5 AJAX 466

1. Making Asynchronous Requests 469

2. Complete Control over AJAX 477

3. Cross-Origin Resource Sharing 477

. 10.6 Asynchronous File Transmission 478

1. The FormData Interface 47

2. Appending Files to a POST 480

1. 10.7 Chapter Summary 484
2. Key Terms 484

3. Review Questions 484

4. Hands-On Practice 484

5. Works Cited 491

11. Chapter 11 Introduction to Server-Side Development with PHP 492

1. 11.1 What Is Server-Side Development? 493

1. Comparing Client and Server Scripts 493

2. Server-Side Script Resources 493

3. Comparing Server-Side Technologies 495
2. 11.2 Quick Tour of PHP 509

1. PHP Tags 509

2. PHP Comments 510

3. Variables, Data Types, and Constants 511

4. Writing to Output 514

5. printf 516

3. 11.3 Program Control 517

1. if ... else 517

2. switch ... case 519

3. while and do ... while 520

4. for 520

5. Alternate Syntax for Control Structures 521

6. Include Files 521

4. 11.4 Functions 524

1. Function Syntax 524

2. Calling a Function 525

3. Parameters 526

4. Variable Scope within Functions 530

1. 11.5 Chapter Summary 531
2. Key Terms 531

3. Review Questions 532

4. Hands-On Practice 532

5. References 537

12. Chapter 12 PHP Arrays and Superglobals 538

1. 12.1 Arrays 539

1. Defining and Accessing an Array 539
2. Multidimensional Arrays 541

3. Iterating through an Array 542
4. Adding and Deleting Elements 544

5. Array Sorting 545

6. More Array Operations 546

7. Superglobal Arrays 547
2. 12.2 % GET and $ POST Superglobal Arrays 548

1. Determining If Any Data Sent 549

2. Accessing Form Array Data 552
3. Using Query Strings in Hyperlinks 553

4. Sanitizing Query Strings 554

3. 12.3%_SERVER Array 559

1. Server Information Keys 559

2. Request Header Information Keys 560

4. 12.4$_FILES Array 561

1. HTML Required for File Uploads 562

2. Handling the File Upload in PHP 562
3. Checking for Errors 564

4. File Size Restrictions 565

5. Limiting the Type of File Upload 566
6. Moving the File 567

5. 12.5 Reading/Writing Files 568

1. Stream Access 568

2. In-Memory File Access 569

1. 12.6 Chapter Summary 577
2. Key Terms 577

3. Review Questions 578

4. Hands-On Practice 578

5. References 583

13. Chapter 13 PHP Classes and Objects 584

1. 13.1 Object-Oriented Overview 585

1. Terminology 585
2. The Unified Modeling L.anguage 585

3. Differences between Server and Desktop Objects 587

2. 13.2 Classes and Objects in PHP 594

1. Defining Classes 594
2. Instantiating Objects 595

3. Properties 595

4. Constructors 595

5. Method 596

6. Visibility 598

7. Static Members 599

8. Class Constants 601

3. 13.3 Object-Oriented Design 602

1. Data Encapsulation 602

2. Inheritance 608

3. Polymorphism 615

4. Object Interfaces 617

1. 13.4 Chapter Summary 620
2. Key Terms 620

3. Review Questions 621

4. Hands-On Practice 621

5. References 623

14. Chapter 14 Working with Databases 624

1. 14.1 Databases and Web Development 625

1. The Role of Databases in Web Development 625

2. Database Design 626
3. Database Options 631

2. 14.2 SQL 633

1. SELECT Statement 633

2. INSERT, UPDATE, and DELETE Statements 636

3. Transactions 636

4. Data Definition Statements 641

5. Database Indexes and Efficiency 641

. 14.3 NoSQL 642

1. Key-Value Stores 643

2. Document Stores 643

3. Column Stores 645

. 14.4 Database APIs 646

1. PHP MySQL APIs 646

2. Deciding on a Database API 646

. 14.5 Managing a MySQL Database 647

1. Command-Line Interface 647

2. phpMyAdmin 649

3. MySQL Workbench 650

. 14.6 Accessing MySQL in PHP 651

1. Connecting to a Database 651
2. Handling Connection Errors 654

3. Executing the Query 656

4. Processing the Query Results 656

5. Freeing Resources and Closing Connection 660

6. Working with Parameters 661

7. Using Transactions 666

7. 14.7 Case Study Schemas 669
1. Travel Photo Sharing Database 669

2. Art Database 669

3. Book CRM Database 670

8. 14.8 Sample Database Techniques 671
1. Search and Results Page 672

2. Editing a Record 676

3. Saving and Displaying Raw Files in the Database 683

1. 14.9 Chapter Summary 687
2. Key Terms 687

3. Review Questions 688

4. Hands-On Practice 688

5. References 693

15. Chapter 15 Error Handling and Validation 695
1. 15.1 What Are Errors and Exceptions? 696

1. Types of Errors 696

2. Exceptions 698
2. 15.2 PHP Error Reporting 698

1. The error_reporting Setting 699

2. The display_errors Setting 699

3. The log errors Setting 700

. 15.3 PHP Error and Exception Handling 701
1. Procedural Error Handling 701

2. Object-Oriented Exception Handling 701

3. Custom Error and Exception Handlers 704

. 15.4 Regular Expressions 705

1. Regular Expression Syntax 705

2. Extended Example 708

. 15.5 Validating User Input 711

1. Types of Input Validation 711

2. Notifying the User 712

3. How to Reduce Validation Errors 713

. 15.6 Where to Perform Validation 716

1. Validation at the JavaScript Level 720

2. Validation at the PHP Level 723

. 15.7 Chapter Summary 728

. Key Terms 728

. Review Questions 729

. Hands-On Practice 729

. References 734

16. Chapter 16 Managing State 735
1. 16.1 The Problem of State in Web Applications 736

2. 16.2 Passing Information via Query Strings 736
3. 16.3 Passing Information via the URL Path 740

1. URL Rewriting in Apache and Linux 740

4. 16.4 Cookies 741

1. How Do Cookies Work? 742

2. Using Cookies 744

3. Persistent Cookie Best Practices 744

5. 16.5 Serialization 746

1. Application of Serialization 748
6. 16.6 Session State 748

1. How Does Session State Work? 753

2. Session Storage and Configuration 754
7. 16.7 HTML5 Web Storage 757

1. Using Web Storage 758

2. Why Would We Use Web Storage? 759

8. 16.8 Caching 761

1. Page Output Caching 761
2. Application Data Caching 763

1. 16.9 Chapter Summary 764
2. Key Terms 764

3. Review Questions 764

4. Hands-On Practice 765

5. References 770

17. Chapter 17 Web Application Design 771
1. 17.1 Real-World Web Software Design 772

1. Challenges in Designing Web Applications 772

2. 17.2 Principle of Layering 773
1. What Is a Layer? 773

2. Consequences of Layering 774

3. Common Layering Schemes 777

3. 17.3 Software Design Patterns in the Web Context 783

1. Adapter Pattern 784

2. Simple Factory Pattern 787

3. Template Method Pattern 789

4. Dependency Injection 792
4. 17.4 Data and Domain Patterns 793

1. Table Data Gateway Pattern 794

2. Domain Model Pattern 795

3. Active Record Pattern 799

5. 17.5 Presentation Patterns 802

1. Model-View-Controller (MVC) Pattern 802

2. Front Controller Pattern 805

6. 17.6 Testing 806

1. 17.7 Chapter Summary 807
2. Key Terms 807

3. Review Questions 808

4. Hands-On Practice 808

5. References 811

18. Chapter 18 Security 814

1. 18.1 Security Principles 815

1. Information Security 815

2. Risk Assessment and Management 816

3. Security Policy 819

4. Business Continuity 819

5. Secure by Design 822

6. Social Engineering 824
2. 18.2 Authentication 825

1. Authentication Factors 825

2. Authentication Factors 826

3. HTTP Authentication 827

4. Third-Party Authentication 829

5. Authorization 831

3. 18.3 Cryptography 832

1. Substitution Ciphers 833

2. Public Key Cryptography 837

3. Digital Signatures 839

4. 18.4 Hypertext Transfer Protocol Secure (HTTPS) 840
1. Secure Handshakes 840

2. Certificates and Authorities 841

3. Migrating to HTTPS from HTTP 844

5. 18.5 Security Best Practices 845

1. Data Storage 845

2. Monitor Your Systems 852

3. Audit and Attack Thyself 854

6. 18.6 Common Threat Vectors 854

1. Brute-Force Attacks 854

2. SQL Injection 855
3. Cross-Site Scripting (XSS) 857

4. Insecure Direct Object Reference 862

5. Denial of Service 862

6. Security Misconfiguration 863

1. 18.7 Chapter Summary 866
2. Key Terms 867

3. Review Questions 867

4. Hands-On Practice 868

5. References 870

19. Chapter 19 XML Processing and Web Services 872

1. 19.1 XML Overview 873

1. Well-Formed XML 873

2. Valid XML 875

2. 19.2 XML Processing 882

1. XML Processing in JavaScript 882
2. XML Processing in PHP 885

3. 19.3 JSON 889

1. Using JSON in Javascript 890
2. Using JSON in PHP 891

4. 19.4 Overview of Web Services 892

1. SOAP Services 893

4.

5.

2. REST Services 895

3. An Example Web Service 896

4. Identifying and Authenticating Service Requests 899
19.5 Consuming Web Services in PHP 900

1. Consuming an XML Web Service 9500

2. Consuming a JSON Web Service 904
19.6 Creating Web Services 911

1. Creating a JSON Web Service 911

19.7 Interacting Asynchronously with Web Services 916

1. Consuming Your Own Service 916
2. Using Google Maps 917

. 19.8 Chapter Summary 925

Key Terms 925

Review Questions 926

Hands-On Practice 926

References 931

20. Chapter 20 JavaScript 4: Frameworks 932

1.

20.1 JavaScript Frameworks 933

1. JavaScript Front-End Frameworks 933

2. JavaScript Server Frameworks 935

2. 20.2 Node.js 937

1. The Architecture of Node.js 937

2. Working with Node.js 942

3. Adding Express to Node.js 945

4. Supporting WebSockets with Node 949

3. 20.3 MongoDB 953

1. MongoDB Features 953

2. MongoDB Data Model 957

3. Working with the MongoDB Shell 957

4. Accessing MongoDB Data in Node.js 960

4. 20.4 Angular 962

1. Why AngularJS? 963

2. Creating a Simple AngularJS Application 965

1. 20.5 Chapter Summary 970
2. Key Terms 970

3. Review Questions 970

4. Hands-On Practice 971

5. References 972

21. Chapter 21 Content Management Systems 973

1. 21.1 Managing Websites 974

1. Components of a Managed Website 974

2. 21.2 Content Management Systems 976

1. Types of CMS 977

3. 21.3 CMS Components 979

1. Post and Page Management 979

2. WYSIWYG Editors 981

3. Template Management 982

4. Menu Control 983

5. User Management and Roles 983
6. User Roles 984

7. Workflow and Version Control 986

8. Asset Management 988

9. Search 989

10. Upgrades and Updates 990
4. 21.4 WordPress Technical Overview 992

1. Installation 992

2. File Structure 993

3. WordPress Nomenclature 995

4. Taxonomies 998

5. WordPress Template Hierarchy 999

5. 21.5 Modifying Themes 1001
1. Changing Themes in Dashboard 1001

2. Creating a Child Theme (CSS Only) 1002

3. Changing Theme Files 1003

6. 21.6 Customizing WordPress Templates 1004
1. WordPress L.oop 1004

2. Core WordPress Classes 1006

3. Template Tags 1008

4. Creating a Page Template 1009
5. Post Tags 1011

7. 21.7 Creating a Custom Post Type 1013

1. Organization 1013

2. Registering Your Post Type 1014

3. Adding Post-Specific Fields 1015
4. Saving Your Changes 1016

5. Under the Hood 1017

6. Displaying Our Post Type 1017
8. 21.8 Writing a Plugin 1020

1. Getting Started 1021
2. Hooks, Actions, and Filters 1021

3. Activate Your Plugin 1022
4. Output of the Plugin 1023

5. Make It a Widget 1023

1. 21.9 Chapter Summary 1024

2. Key Terms 1025

3. Review Questions 1025

4. Hands-On Practice 1025

5. References 1029

22. Chapter 22 Web Server Administration and Virtualization 1030

1. 22.1 Web Server—Hosting Options 1031

1. Shared Hosting 1031

2. Dedicated Hosting 1034

3. Collocated Hosting 1035

4. Cloud Hosting 1036
2. 22.2 Virtualization 1037

1. Server Virtualization 1037

2. Cloud Virtualization 1041

3. 22.3 Domain and Name Server Administration 1043

1. Registering a Domain Name 1044
2. Updating the Name Servers 1046

3. DNS Record Types 1047

4. Reverse DNS 1049

4. 22.4 Linux and Apache Configuration 1049

1. Configuration 1051

2. Daemons 1051

3. Connection Management 1053

4. Data Compression 1055

5. Encryption and SSL 1056

6. Managing File Ownership and Permissions 1058

5. 22.5 Apache Request and Response Management 1059

1. Managing Multiple Domains on One Web Server 1059

2. Handling Directory Requests 1061

3. Responding to File Requests 1062

4. URL Redirection 1062

5. Managing Access with .htaccess 1066

6. Server Caching 1068
6. 22.6 Web Monitoring 1070

1. Internal Monitoring 1070

2. External Monitoring 1072

1. 22.7 Chapter Summary 1072

2. Key Terms 1072

3. Review Questions 1073

4. Hands-On Practice 1073

5. References 1075

23. Chapter 23 Search Engines 1076

1. 23.1 The History and Anatomy of Search Engines 1077

1. Before Google 1077

2. Search Engine Overview 1078

2. 23.2 Web Crawlers and Scrapers 1080

1. Robots Exclusion Standard 1082

2. Scrapers 1083

3. 23.3 Indexing and Reverse Indexing 1084

4. 23.4 PageRank and Result Order 1086

5. 23.5 Measures of Similarity 1089
1. Comparing Words 1089

2. Comparing Larger Dictionaries 1091

6. 23.6 White-Hat Search Engine Optimization 1096
1. Title 1096

2. Meta Tags 1097

3. URLs 1098

4. Site Design 1100
5. Sitemaps 1101

6. Anchor Text 1102

7. Images 1103

8. Content 1103

7. 23.7 Black-Hat SEO 1104

1. Content Spamming 1104
2. Link Spam 1106

3. Other Spam Techniques 1108
1. 23.8 Chapter Summary 1110

2. Key Terms 1110

3. Review Questions 1111

4. Hands-On Exercises 1111

5. References 1115

24. Chapter 24 Social Networks and Analytics 1116

1. 24.1 Social Networks 1117

1. How Did We Get Here? 1117

2. Common Characteristics 1120

2. 24.2 Social Network Integration 1121

1. Basic Social Media Presence 1122

2. Facebook's Social Plugins 112
3. Open Graph 1128

4. Google's Plugins 1130
5. Twitter's Widgets 1132

6. Advanced Social Network Integration 1135

. 24.3 Monetizing Your Site with Ads 1136
1. Web Advertising 101 1136

2. Web Advertising Economy 1139

. 24.4 Marketing Campaigns 1140
1. Email Marketing 1141

2. Physical World Marketing 1145

. 24.5 Search Engine Webmaster Support Tools 1147

1. Search Engine Webmaster Tools 1147

. 24.6 Analytics 1148

1. Metrics 1149

2. Internal Analytics 1149

3. Third-Party Analytics 1149

. 24.7 Chapter Summary 1155
. Key Terms 1155

. Review Questions 1156

4. Hands-On Practice 1156

5. References 1160

1. Index 1161

Preface

Welcome to the Fundamentals of Web Development. This textbook is
intended to cover the broad range of topics required for modern web
development and is suitable for intermediate to upper-level computing
students. A significant percentage of the material in this book has also been
used by the authors to teach web development principles to first-year
computing students and to non-computing students as well.

One of the difficulties that we faced when planning this book is that web
development is taught in a wide variety of ways and to a diverse student
audience. Some instructors teach a single course that focuses on server-side
programming to third-year students; other instructors teach the full gamut of
web development across two or more courses, while others might only teach
web development indirectly in the context of a networking, HCI, or capstone
project course. We have tried to create a textbook that supports learning
outcomes in all of these teaching scenarios.

What is Web Development?

Web development is a term that takes on different meanings depending on
the audience and context. In practice, web development requires people with
complementary but distinct expertise working together toward a single goal.
Whereas a graphic designer might regard web development as the application
of good graphic design strategies, a database administrator might regard it as
a simple interface to an underlying database. Software engineers and
programmers might regard web development as a classic software
development task with phases and deliverables, where a systems
administrator sees a system that has to be secured from attackers. With so
many different classes of user and meanings for the term, it's no wonder that
web development is often poorly understood. Too often, in an effort to fully
cover one aspect of web development, the other principles are ignored
altogether, leaving students without a sense of where their skills fit into the

big picture.

A true grasp of web development requires an understanding of multiple
perspectives. As you will see, the design and layout of a website are closely
related to the code and the database. The quality of the graphics is related to
the performance and configuration of the server, and the security of the
system spans every aspect of development. All of these seemingly
independent perspectives are interrelated and therefore a web developer (of
any type) should have a foundational understanding of all aspects, even if
they only possess expertise in a handful of areas.

What's New in the Second Edition?

The first edition of this book was mainly written in the first half of 2013 and
then published in early 2014. Since that time, web development has
simultaneously experienced both constancy and innovation. The new edition
tries to capture both of these traits. As well, since publishing the first edition
we have received a great deal of useful feedback from instructors and
students, which we have incorporated into this version of the book.

The second edition aspires to faithfully cover the most vital trends and
innovation in the field since 2013. The book's coverage of JavaScript has
been substantially increased from the two chapters in the first edition to the
four chapters in this edition. We have also revisited and expanded coverage
to reflect changes in HTML, CSS, and PHP over the past three years. We've
also added new content in several chapters to address increasingly popular
areas like CSS3, version control, NoSQL, new tools, virtualization, and
analytics (among others).

On the constancy side, we certainly didn't rewrite everything! This new
edition contains plenty of content from the first edition. But even the material
that didn't require substantial revisions still went through careful
reconsideration and sometimes we restructured or made small improvements
(and bug fixes) to existing content.

This version of the book also includes revisions to the overall layout

including several new section types that better guide the reader with advice.
We've also made some changes to the page layout to help readers distinguish
advanced topics from more introductory material, allowing students to focus
at a level appropriate for their learning.

Finally, all the end-of-chapter projects, many of the in-chapter exercises and
listings, and additional online learning materials have been revisited,
enhanced, or created anew to bring them up to date with the changes made
throughout the book.

Features of the Book

To help students master the fundamentals of web development, this book has
the following features:

e Covers both the concepts and the practice of the entire scope of web
development. Web development can be a difficult subject to teach
because it involves covering a wide range of theoretical material that is
technology independent as well as practical material that is very specific
to a particular technology. This book comprehensively covers both the
conceptual and practical side of the entire gamut of the web
development world.

e Focused on the web development reality of today's world and in
anticipation of future trends. The world of web development has
changed remarkably in the past decade. For instance, fewer and fewer
sites are being created from scratch; instead, a great deal of current web
development makes use of existing sophisticated frameworks and
environments such as jQuery, WordPress, HTMLJ5, and Facebook. We
believe it is important to integrate this new world of web development
into any web development textbook.

e Sophisticated, realistic, and engaging case studies. Rather than using
simplistic “Hello World” style web projects, this book makes extensive
use of three case studies: an art store, a travel photo sharing community,
and a customer relations management system. For all the case studies,

supporting material such as the visual design, images, and databases are
included. We have found that students are more enthusiastic and thus
work significantly harder with attractive and realistic cases.

Comprehensive coverage of a modern Internet development platform. In
order to create any kind of realistic Internet application, readers require
detailed knowledge of and practice with a single specific Internet
development platform. This book covers HTML5, CSS3, JavaScript,
and the LAMP stack (that is, Linux, Apache, MySQL, and PHP). Other
important technologies covered include jQuery, JSON, Node.js,
MongoDB, Angular]JS, XML, WordPress, Bootstrap, and a variety of
third-party APIs that include Facebook, Twitter, and Google and Bing
Maps.

Content presentation suitable for visually oriented learners. As long-time
instructors, the authors are well aware that today's students are often
extremely reluctant to read long blocks of text. As a result, we have tried
to make the content visually pleasing and to explain complicated ideas
not only through text but also through diagrams.

Content that is the result of over twenty five years of classroom
experience (in college, university, and adult continuing education
settings) teaching web development. The book's content also reflects the
authors' deep experience engaging in web development work for a
variety of international clients.

Tutorial-driven programming content available online. Rather than using
long programming listings to teach ideas and techniques, this book uses
a combination of illustrations, short color-coded listings, and separate
tutorial exercises. These step-by-step tutorials are not contained within
the book, but are available online at www.pearsonhighered.com/cs-
resources. Throughout the book you will find frequent links to these
tutorial exercises.

Complete pedagogical features for the student. Each chapter includes
learning objectives, margin notes, links to step-by-step tutorials,
advanced tips, keyword highlights, end-of-chapter review questions, and
three different case study exercises.

http://www.pearsonhighered.com/cs-resources

e Code listings available online. Many of the code listings used in the
book are publicly available on GitHub (https://github.com/rconnolly/
funwebdev-2nd-codelistings) and on CodePen (http://codepen.io/
randyc9999/collections/public).

Organization of the Book

The chapters in Fundamentals of Web Development can be organized into
three large sections.

e Foundational client-side knowledge (Chapters 1-10). These first
chapters cover the foundational knowledge needed by any front-end web
developer. This includes a broad introduction to web development
(Chapter 1), how the web works (Chapter 2), HTML (Chapters 3 and 5),
CSS (Chapters 4 and 7), web media (Chapter 6), and JavaScript

(Chapters 8-10).

e Essential server-side development (Chapters 11-16). Despite the
increasing importance of JavaScript-based development, learning server-
side development is still the essential skill taught in most web
development courses. The basics of PHP are covered in Chapters 11 and
12. Object-oriented PHP is covered in Chapter 13. Database-driven web
development is covered in Chapter 14, while state management and
error handling are covered in Chapters 15 and 16.

e Specialized topics (Chapters 17-24). Contemporary web development
has become a very complex field, and different instructors will likely
have different interest areas beyond the foundational topics. As such,
our book provides specialized chapters that cover a variety of different
interest areas. Chapter 17 covers web application design for those
interested more in software engineering and programming design.
Chapter 18 covers the vital topic of web security. Chapter 19 covers
another programming topic: namely, consuming and creating web
services. Chapter 20 covers frameworks in general, and provides an
overview of the growing JavaScript-based MEAN (MongoDB,
ExpressJS, AngularJS, and Node.js) development stack. Chapter 21

https://github.com/rconnolly/funwebdev-2nd-codelistings
http://codepen.io/randyc9999/collections/public

covers the increasingly important topic of integrating with (and
customizing) content management systems. The next two chapters
address two important non-development topics: web server
administration (Chapter 22) and search engines (Chapter 23). Finally,
Chapter 24 covers another increasingly important topic: how to integrate
third-party social networks and measure your site's success through web
analytics.

Pathways through this Book

There are many approaches to teach web development and our book is
intended to work with most of these approaches. It should be noted that this
book has more material than can be plausibly covered in a single semester
course. This is by design as it allows different instructors to chart their own
unique way through the diverse topics that make up contemporary web
development.

We do have some suggested pathways through the materials (though you are
welcome to chart your own course), which you can see illustrated in the
pathway diagrams.

e All the web in a single course. Many computing programs only have
space for a single course on web development. This is typically an
intermediate or upper-level course in which students will be expected to
do a certain amount of learning on their own. In this case, we

complimentary chapters include 17, 18, and 23.

e Client-focused course for introductory students. Some computing
programs have a web course with minimal programming that may be
open to non-major students or which acts as an introductory course to
web development for major students. For such a course, we recommend
covering Chapters 1-7. You can use Chapters 8 and 9 to introduce
client-side scripting if desired. If some server-side web programming is
going to be introduced, you can also cover Chapters 11 and 12. If no
programming is going to be covered, you might consider adding some

parts of Chapters 21, 23, and 24.

Server-focused course for intermediate students. If students have already
taken a client-focused course (or you want the students to learn the
client content quickly on their own), then Chapters 11-17 and perhaps
Chapters 18, 19 and 22 would provide the students with a very solid
foundation in server-side development.

Advanced web development course. Some programs offer a web
development course for upper-level students in which it is assumed that
the students already know the foundational topics and are also
experienced with the basics of server-side development. Such courses
probably have the widest range of possible topics. One example of such
a course might include advanced client and server Chapters 10, 13 and
20 alongside a selection of the advanced topics from Chapter 17-24.

Infrastructure-focused course. In some computing programs the
emphasis is less on the particulars of web programming and more on
integrating web technologies into the overall computing infrastructure
11, 14, 18, and 22 with an option to include some topics from Chapters
6, 15, 19, and 23.

1-1 Full Alternative Text

For the Instructor

Web development courses have been called “unteachable” and indeed
teaching web development has many challenges. We believe that using our
book will make teaching web development significantly less challenging.

The following instructor resources are available at
www.pearsonhighered.com/irc:

e Attractive and comprehensive PowerPoint presentations (one for each
chapter).

e Images and databases for all the case studies.
e Solutions to end-of-chapter exercises and to tutorial exercises.

Many of the code listings and examples used in the book are available on
GitHub (https://github.com/rconnolly/funwebdev-2nd-codelistings) and on
CodePen (http://codepen.io/randyc9999/collections/public).

Why this Book?

The ACM computing curricula for computer science, information systems,
information technology, and computing engineering all recommend at least a
single course devoted to web development. As a consequence, almost every
postsecondary computing program offers at least one course on web
development.

Despite this universality, we could not find a suitable textbook for these
courses that addressed both the theoretical underpinnings of the web together
with modern web development practices. Complaints about this lack of
breadth and depth have been well documented in published accounts in the

http://www.pearsonhighered.com/irc
https://github.com/rconnolly/funwebdev-2nd-codelistings
http://codepen.io/randyc9999/collections/public

computing education research literature. Although there are a number of
introductory textbooks devoted to HTML and CSS, and, of course, an
incredibly large number of trade books focused on specific web technologies,
many of these are largely unsuitable for computing major students. Rather
than illustrating how to create simple pages using HTML and JavaScript with
very basic server-side capabilities, we believed that instructors increasingly
need a textbook that guides students through the development of realistic,
enterprise-quality web applications using contemporary Internet development
platforms and frameworks.

This book is intended to fill this need. It covers the required ACM web
development topics in a modern manner that is closely aligned with
contemporary best practices in the real world of web development. It is based
on our experience teaching a variety of different web development courses
since 1997, our working professionally in the web development industry, our
research in published accounts in the computing education literature, and in
our corresponding with colleagues across the world. We hope that you find
that this book does indeed satisfy your requirements for a web development
textbook!

Acknowledgments

A book of this scale and scope incurs many debts of gratitude. We are first
and foremost exceptionally grateful to Matt Goldstein, the Acquisitions
Editor at Pearson, who championed the book and guided the overall process
of bringing the book to market. Joan Murray and Shannon Bailey from
Pearson played crucial roles in getting the initial prospectus considered.
Louise Capulli was the very capable Project Manager who facilitated
communication between the sometimes finicky authors and the production
team. Erin Ault and Kristy Alaura from Pearson also contributed throughout
the writing and production process. We would like to thank Revathi
Viswanathan and her team at Cenveo Publisher Services for the work they
did on the postproduction side. We would also like to thank Laura Naso,
proofreader, who made sure that the words and illustrations actually work to
tell a story that makes sense.

Reviewers help ensure that a textbook reflects more than just the authors'
perspective. We were truly blessed in having two extraordinary reviewers:
Jordan Pratt of Mount Royal University and Sam Wainford of Georgia
Southern University, who carefully examined every single chapter in this
edition.

There are many others who helped guide our thinking, provided suggestions,
or made our administrative and teaching duties somewhat less onerous. While
we cannot thank everyone, we are grateful to Mount Royal University for
granting a semester break for one of the authors, Peter Alston (now at the
University of Liverpool) and his colleagues at Edge Hill University for
hosting one of the authors for an important week early in the book's
composition, and Craig Miller of De Paul University, who co-edited a special
issue on teaching web development for the ACM Transactions of Computing
Education with one of the authors and which helped us formulate some of the
needed new directions for the second edition. Our long-time colleagues Paul
Pospisil and Charles Hepler provided very helpful diversions from web
development, which were always appreciated. We would also like to express
our gratitude to all the instructors who took the time to email us about the

first edition. Their praise, suggestions for improvements, or their admonition
for mistakes or omissions was always very welcome and hopefully resulted in
a better second edition. And of course we would like to acknowledge all our
students who have improved our insight and who acted as non-voluntary
guinea pigs in the evolution of our thinking on teaching web development.

We are very appreciative of those who donated photos for the Travel case
study used throughout the book: Alexander Connolly, Mark Eagles, Sonya
Flessati, Emily Girard, Mike Gouthro, Jordan Kidney, Roy Kuhnlein, and
Jocelyn Sealy. For this edition, our Art case study was able to take advantage
of the public-spirited and generous open content policies of the
Rijksmuseum, the J. Paul Getty Museum, the National Gallery of Art
(Washington, DC), and The Metropolitan Museum of Art (NY).

From the early inception of the book in May of 2012 all the way to the
conclusion of this edition in the late months of 2016, Dr. Janet Miller
provided incredible and overwhelming encouragement, understanding, and
feedback for which Randy Connolly will be always grateful. Joanne Hoar
made this book possible for Ricardo Hoar with continuous emotional support
and professional feedback, all while maintaining a stable household for their
three young children. Finally, we want to thank our children, Alexander
Connolly, Benjamin Connolly, Mark Miller, Hannah Miller, Archimedes
Hoar, Curia Hoar, and Hypatia Hoar, who saw less of their fathers during this
time but were always on our minds.

What You will Learn

You will begin
with basic HTML.

vy s mn

30

My Sample Art Store Then learn CSS to make your

Mademobole Carline Rivie HTML more attractive.

“?1
1T P -
Sl kN bos S Do o R ko b vl X (W} |
The patn i 1
| i, il W Ty e <

micracs b Lol Sovitrs was puisied i 1804 b 0
e Lawnm. Inis ria fird of o LTI

38

Dutch Portraits of the Golden Age
From the Rijks Museumn

L

Art Filters

Then use JavaScript to create
interactive user experiences.

1-2 Full Alternative Text

Learn PHP to dynamically
generate pages based on
information contained
within databases.

L T ———— L

& e o prme] e 2o ch o paring e Gy Xe+00

ore .

Portrait of Johannes Wienbogsert

PO

Portrait sl 5 Couple, Probasly luss: Abrshamir Masss i
e S | Ecatrix van der Laen
[0 {
bgom: 1 cambriatin cione i1 quck 1 P 4 1k
— i - iy g s e

Make use of more
advanced knowledge
about state, design,
security, and search.

sy
X4 +00

Paintings

AL - R

s b B T el o S bl

o
a-

A Milzliman Haolding a Derkemeyer
u e
)

). Paul Getty
Museum

- T

wEEE
M
LAEE
AEHE
dEEE
ZEUE

Unite JavaScript with
PHP to integrate
external web services,
content management
systems, and social
networks.

1-3 Full Alternative Text

Visual Walkthrough

Hundreds of color-coded
illustrations clarify key
concepts.

Separate hands-on exercises
(available online) give
readers opportunity to
practically apply concepts =

B m—

A CHAPTER L Aol O3 Lyt

5 ol B wia b
vl Faw corudfads

1

dnaita waly piromm asd (st i ..

B e Fvma b i
LT T T

oy e (i e Ui yie it
Photh wreman [T ——
s i e s

HAIRE 8 91 i wedi garly

Wisriee, smee anly wiiliigg e ociquint o o Fgios 530 dheik bat |

cpoppend she sranse, wecmng the mewTon @ call o i ereiting @ repenae
dragm. Theve pevch m be a way oo coumhorm the bok of da s e the smaller
wrren of the mobale dersr, which wibe job of de nead ey compent of rpon:
it g, mki s

— Security, Pro Tip, and
Note boxes emphasize
important concepts and
practical advice.

T i wonih o passng that whiat T %51 dRisraten ia thai i w1 abor
106 o b e e e i ooty e M el Bt
il iy b ik e weron o il bl desiis v,

567 Media Qusrios

The il ey smigpimiel. o revpintiie dridain e 55 e s g
b bl 030 il B st hlﬂi'-J.r{thI‘h-
e ek o 0 bkt o thes cupuabulnin o b e, 1d i

il
| il

bt s g thew deeee, Unfortnaiely, mechs quenes see wer sapporeed by lirrart
LA b Esgiortn ¥ il ciher.
[T s

Pgars 5.8 (Bernmes the syaram of 8 cypveed mechs gy These queies are
icaoums sxpromions ancun by ackdecive par O34 S o v e <links akarem 1o
wndimely e adiffersnt exieraal T8 fe bueed o the ol of the desar,

; Key terms are highlighted
in consistent color.

Taktk: 5.0 i 2 parsl list of i browser Ersfurms po cn exnne with modia
s My of thess fittnes v wha- il i v,
dcmngorary reponave wtes wll dypacally prerals C34 nibs for pm.- h
|'|r1 I'u. |h-n dablein, il dheokingg inannricne, 0 afprand dalinl prowss
i linch o hesdh e ekt b ragitmely s advical devaes,
mﬂlﬂuhm iwill o e i e St dhgier. Fogare 3,14 [hastrates o
e i i e il daee b frorsds prodiin el e
Pt e @e wndlent denin 8 dusordud B, sl dh Liggeat dhnin 10
drobad b Ginis buey in the souree gude] i wendks sutlar ndas, this

and techniques covered
in the text.

27 Cunpen aray A1)

peogmiin a1 6 Do of dhe e, The puesatl alvintge of e fovabai
apspresiah (6 dhe alulity 10 o ainiaie ik, dire i paaaily, i eadiney il
WAL, alamaas,

Tl for vem 1 paral mcemsansneon o sl cun e don wing the <o
ehuw vl besnimd thr e <l s bk, Chiew are, an hird gty Juvabangi
s o o Tl - i Borsitoe e i e il el i)
by cha v vl b s e iy af "wsned” webs developan,

1.7 Chapter Summary

Thea chuaptsr han corvored dhe cssnmal scoespen ansl sarma in wib mods, which
malmdes ek i g Flies b o el e viskes ke o owell, The chgien
Dol o e et apOrand v o i el i the bosit oo g
frrmaien. Thie chiaper s covvorsd MUV wppeont for ik s ke e

T.0.1 Key Tarme .
prcin Key terms appear again
[P T— o o t d f h t

o — fuliars T T

- 1oL sabiw meas] rekreaie puurl atend of cha p er.
[i REH o s

v dinamn o [p——

CMYE ankor meodd I it

il lghinna wilsirgtiie sk

uli ey Lim it e NG

clor palana boary oo TIF

eontmar fomas LIK congoomcs T AR

gl e, sk cnialig T -~

LA —— MPEGA

ihsrig Ty

1.7.2 Review Qusitions

b b i ol i o hialhiionan)

3 e o ety wivages (b o, wovmee i)

§, rethy dbosar b thee Bl CHIYE, il PEIL cisne ruosels,
A Whhat i opacity P Frossde sumngles of theser fBrweat ways t0 00t 11 088
A, What is s P o il aied dcl whasl?

o, Whian i polir b Wit is i bl na b

7, Wi pater immages, coww remng sagn it gy qudny? Way o why s

Review questions at end
of chapter provide
opport

1-4 Full Alternative Text

18,2 Diamain and Hama Server i]

Whe chomng & <loid hat, be sure 20 ask the iame guistom jou wauldaf a

shared ar & dodicased bot, and iy w0 poust snewors fo reel quoisoes thar delse to

the cled a6 & mage ceairy that will micscid ooy eolie i your preblosa, At the

il oof the dday & vasgana for vour website has 10 by amwvned by o physial mashing

with acess 1o AN, Fe sem, and an 05,

19,2 Domain and Name Server Administration

The domaln rame sy (NS ks the distrdbaned neowoek thit resolves quenies for

damain nasses, Fira comead back i €I 1, TS et puonple wnie dhomain names i‘ I

rather than [sddsesses, making URLs more intuitive and essy to emessher

Diespéte i wisiquity (m Intermeet commianication, the desads of the DNS systes o =i

i {gnitant whim Fou starl 1 adinsn jous owe webiae. Al 1 R
T authery e grimg bock e the [INS yatem and segivae deseription i Do

hack
oy Chapites 1, The ditash abwut maniging & damdin fams fof oo Ler iequine thit yor
ankevtand the parsos ivabvod i o DING rolution rogucss, as dbown in Figare 19,4,
This section bulbds én an wesbisianding of the BRE gviom and deelbi we
complevines voled with Jomain s rogiteatisn sad sdsinntranion.

FIGURE 19.5 Ilygestan offhe domain name rembition process (it shawn i Chagter 1)

— |llustrations help explain
especially complicated
processes.

Important algorithms are
illustrated visually to
help clarify understanding.

Ty
try {
Toanegirieg = “mpglibastelod
SiieP = eibiier
0 Tpans = “mppanamrd”
ipdo = new PO Boomnbaring, b
0

fessalt = Sado-wuerylBaal

while {irew o frasule-ofunchi]

+ ‘3¢—|E acha $rme['10°]

B— Sl = 1,
1

tatch (M0Enception el {

o—l diad Seoaqeiiessaped);
1

PECURE 1129 Baikt databine (OADECION g

st = “lealmise
SaTHNIE - "DUKDAT]
Sater » "TEITULA
Spais & “mpasin

Soammaction « myuqli_comnect{faat,

Sl anbanribune (P ATTR (RGOl P00 [RMCOL DXCTPTION

Bl = “selecy * from Carappries armer by Canagoryhams

4 wadi fy thase vartabler for yoar fninallarian

LSTING 11,3 Connecting 1 8 cistatase weh m;

13 Arces

alhotdinamesbockora’s
. bl

i

Sroal “Caragaryfiane’] | “iris®:

e

P N—

faner, fgans, Sdatabasel;

b [groeedr)

astallatien

/ modify these vardables for your 1)
D = “eysq ihast

Buiar = “fostusar”;

Bpann = Cwypasamrd”;

pdn = e FOOfeoAnectibErRg, B

TRTRG 114 Jaaneting 10 o detahase wen POD (obyp-onemes)

ier, Bpanall

— Color-coded source

code listings emphasize
important elements and
visually separate
comments from the code.

1-5 Full Alternative Text

Tools Insight sections
introduce many of
the most essential
tools used in web
development.

B 100Ls INSIGHT

npm (Node Package Manager)

The Node Package Manager (o rom a1 (it 13 usually cal
Irwitaied with Noda i 1t B 3 desmand |68 teal which
b rest af the Nede jt ervirormens,

Ay you might have already deduced, rpm fs used 1
packages con be installed baally within the nods_modu] o)
feider. Or they can be imialied globully on your madhine,
1o instal packages that are aciusly spplications that you
The pepular Bower and Grund build tools ane sxamples off

To intall an ngam paiiages locally, you simaly e
irdtance, the Tallowing comenand installs the popular £
gurrent foider location:

Fglm GRELa]] eEpress

Whaat does thes command actually do? It creates & fold
alressly eaist, and then retreves o1 the foldens ard Jrvasol

B® DIvE DEEPER

Naming Conventions and Style Guides

Loching at Listing 7.5, yau might be pusaied by the strange dass names vsed by the
Material Lte Frameswark. They are in fact an exsampie of the popular BEM (Block Element
Medifier) naming convention. When you shyle a complex site paithout the benefit of a
Tramawerk], it does not take long belore you hawe mary 055 dasses and eleron, afien
dorens and dosers and dogens of thir, Eadh dewelopar might ha his of b com g5t
Hod e dfa5ves oF Lsng selectons; o thers are seeral cevel OPars then maintaiing sudh
& hadgepadge can be & Righimaie, Folowing & coniistent Naming and (5age (mmnlan
ke i edner 10 Make chanjes and feuie My'e

FiAl s one of the more popular raming and usage netems. it 5 based on the idea
that ail centent ar a web page can be categorined 3 log<al blacks and elemants. As can
B saan In Figure 7.50, & block v 3w inserface entity that could petentially be revied

recent Expros patkage from the rgenis.com weelinte, and
modu e foider, The npenfr com website containg aver 500,0
ages and ha become, liee Griub, sn imporant part of mg

O of the kiy STradion of nge s that you can
can spidlty which packages and which wrilons of sach
i, You do this by aresting & package. son e, which
e, You can get ngm to oreate this file for you via the

eliewhere an a page of the, & bledk i companed of elaments that are rot uisble sutice
of thair block, & mod an options exira that cn be wied to sher the appesrande of
& biodk af alairent,

rgm init

AT any huture poing, you can wpdate your project
aned, The np srsteim will dhed the npmg.com web site
ehericis, and if there are vy, they will be donriloaded

Pk greved g Bl Hl

FRGURE 790 Blocks, shmeris, A madors

Tangential material
has been moved into ~ >
Dive Deeper sections,
thereby keeping the
main text more focused.

Listing 7.6 Bustraies how the BEM naming eermventlon warks, which uies the foliaw
Iing systern for naming clases
block _alement - -modifier

Using BEM does take some gelting wied o In the BEM spprosch, one uses (35 casies for
all styng. That is, you do rot mske vse of dedendent, element, or id selecion!

"9 EXTENDED EXAMPLE

in L example, we are going 1o constnect & threecolurn layout using Mlebar Liyout
The redult will be dearer and simpler than the Tkeat of positioning apprasches snd, onde
¥ous bearm media quearies lated in the dhapler, it would sasy to modify in order to make it
FEpaniae fof Mobae devioe,

Extended Example sections
provide detailed guidance
in the application of a

chapter’s content or in Town

the creation of more iy
complicated effects.

iheee i the basie Layout
container |
dieplay Ao

Tt it i st

<psideraiiabars) s ider
S tarF o tar<) oot ers
<t

reader |
fex-basis: 00N
}
foiter |
o hanin: 190
)
container |
draplayAe

Bau-ardp: wip

ray §

fax.Basis: Tem
I
aside {

Bax-Baais 108
}
nain |

1-6 Full Alternative Text

Each chapter ends with three
case study exercises that

allow the reader to
practice the material
covered in the chapter
within a realistic context.

rvarvisa

Fnknactioen.

T 1. Yens have boen provided with swa Slos the dats ey foes | Chapserld
oot phip) and the page that will praos the Foan diti (art-form procos

§.6.1 Hands-On Practice

FROFECT 1. At Store

BEFATY LPIEL: Bapinsas

Mhsmomstra te your ahiliey to work wich arcays and supueghobals in PHP.

—

Exercises contain step-
Vi e i by-step instructions of

mur justdefined

i varying difficulty.

1 areay, Al display the first

Exercises increase in
complexity and can

the Beawndt (i
gt the puge
XAMMP, the B
the reqment will be localb

ar, and thin
ne-pathdChageerFhprogecil] php,

FROFECT 2 Share Your Travel Fhotos

BETROALTY LEVEL: infwmaidiate

Derven
Yo hure bere provided with swn Hew 2 pape that will eve
ruasds foe @ variety of eravel images {Chapoe(ed 2.

ly corstam thumb-

be assigned separately
by the instructor.

AR
ERER I

R 6

Attractive and realistic
case studies help

engage the readers’
interest.

All images, pages, classes,
databases, and other
material for each of

the case studies are
available for download.

CHAFTER § P Aevays s Supmrgglobabi

Wit 3 s Tt chiplas this
gt el i i data
wiiur i i mages sy
deined in travel -duts plp

e n
Wit That Frds fae el

b
) P BT

e bocgs e Shegiy
WP T T
L] - -
kel dits ghg

ey | =ear=e]
scpiogriate ir# st
ireeey

.

Notce that links S0 Gourie
P b e T VY e
i b R T D

PIGIRRL 9,98 Comginted Prosest I

1-7 Full Alternative Text

1 Introduction to Web Development

Chapter Objectives

In this chapter, you will learn ...
e About web development in general
e The history of the Internet and World Wide Web
e Fundamental concepts that form the foundation of the Internet
e About the hardware and software that support the Internet
e The range of careers and companies in web development

This chapter introduces the World Wide Web (WWW). It begins with an
answer to the broad question, what is web development. It then progresses
from that large question to a brief history of the Internet. It also provides an
overview of key Internet technologies and ideas that make web development
possible. To truly understand these concepts in depth, one would normally
take courses in computer science or information technology (IT) covering
networking principles. If you find some of these topics too in-depth or
advanced, you may decide to skip over some of the details here and return to
them later.

1.1 A Complicated Ecosystem

You may remember from your primary school science class that nature can
be characterized as an ecosystem, a complex system of interrelationships
between living and nonliving elements of the environment. As visualized in
Figure 1.1 , web development can also be understood as an ecosystem, one
that builds on existing technologies (URL, DNS, and Internet), and
contributes new protocols and standards (HTTP, HTML, and JavaScript) that
facilitate client-server interactions. As this ecosystem matures, new client and
server technologies, frameworks, and platforms continue to be developed in
support of the web (PHP, jQuery, Bootstrap, etc.). The rich web development
ecosystem has created entirely new areas of interest for both research and
businesses including search engines, social networks, ecommerce, content
management systems, and more.

Figure 1.1 The web
development ecosystem

Figure 1.1 Full Alternative Text

Just as you don't need to know everything about worms, trees, birds,
amphibians, and dirt to be a biologist, you don't necessarily need to
understand every concept in Figure 1.1 in complete depth in order to be

successful as a web developer. Nonetheless, it is important to see how this
complicated network of concepts and technologies defines the scope of
modern web development, and how concepts from each chapter fit into the
bigger picture.

In Figure 1.1 , web development is visualized as a three-story building with
some unusual things going on inside. What we tried to capture in this image
is the idea that one can understand web development as an activity with three
broad levels. At the basement level are the foundational components,
necessary to make it all work, but operating more or less out of sight. The
main-floor level includes the topics usually understood to constitute web
development: HTML, CSS, JavaScript, and some type of server-side
programming language, such as PHP. Finally, on the upper level reside the
most advanced topics, be they search algorithms, security threats, or
advanced programming design.

The topics covered in this textbook can also be broadly considered to reside
within this same three-story building. Almost all entry-level web
development positions require proficiency with the topics shown on the main
floor. Thus, most of the book's chapters focus on these topics.

It is the perspective of the book, however, that web development is more than
just markup and programming. In recent years, knowledge of the
infrastructure upon which the web is built has become increasingly important
for practicing web developers. For this reason, this chapter (and the next)
journeys into the basement of foundational protocols, hardware
infrastructure, and key terminology.

The last third of the book corresponds to the topics shown on that top floor. If
you are taking a single course in web development, you might not have time
to cover these more “advanced” topics. Yet, as far as real-world web
development, they are just as important as the more recognizable ones on the
main floor. We would encourage all of our readers to ascend to the upper-
floor topics during their journey to become a web developer with this book.
But before we go there, it is now time to begin with the foundational
knowledge and learn more about web development in general.

1.2 Definitions and History

The World Wide Web (WWW or simply the web) is certainly what most
people think of when they see the word “Internet.” But the WWW is only a
subset of the Internet, as illustrated in Figure 1.2 . While this book is focused
on the web, part of this chapter is also devoted to a broad understanding of
that larger circle labeled the “Internet.”

Internet

Online
gaming

Figure 1.2 The web as a subset
of the Internet

Figure 1.2 Full Alternative Text

1.2.1 A Short History of the Internet

The history of telecommunication and data transport is a long one. There is a

strategic advantage in being able to send a message as quickly as possible (or
at least, more quickly than your competition). The Internet is not alone in
providing instantaneous digital communication. Earlier technologies like
radio, telegraph, and the telephone provided the same speed of
communication, albeit in an analog form.

Telephone networks in particular provide a good starting place to learn about
modern digital communications. In the telephone networks of old, calls were
routed through operators who physically connected caller and receiver by
connecting a wire to a switchboard to complete a circuit. These operators
were around in some areas for almost a century before being replaced with
automatic mechanical switches that did the same job: physically connect
caller and receiver.

One of the weaknesses of having a physical connection is that you must
establish a link and maintain a dedicated circuit for the duration of the call.
This type of network connection is sometimes referred to as circuit switching
and is shown in Figure 1.3 .

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that
thus dost talk in signs!

Thou map of woe, that { ! 4
thus dost talk in signs! :

Figure 1.3 Telephone network

as example of circuit switching

Figure 1.3 Full Alternative Text

The problem with circuit switching is that it can be difficult to have multiple
conversations simultaneously (which a computer might want to do). It also
requires more bandwidth, since even the silences are transmitted (that is,
unused capacity in the network is not being used efficiently).

Bandwidth is a measurement of how much data can (maximally) be
transmitted along a communication channel. Normally measured in bits per
second (bps), this measurement differs according to the type of Internet
access technology you are using. A dial-up 56-Kbps modem has far less
bandwidth than a 10-Gbps fiber optic connection.

In the 1960s, as researchers explored digital communications and began to
construct the first networks, the research network ARPANET was created.
ARPANET did not use circuit switching but instead used an alternative
communications method called packet switching. A packet-switched network
does not require a continuous connection. Instead, it splits the messages into
smaller chunks called packets and routes them to the appropriate place based
on the destination address. The packets can take different routes to the
destination, as shown in Figure 1.4 . This may seem a more complicated and
inefficient approach than circuit switching, but is in fact more robust (it is not
reliant on a single pathway that may fail) and a more efficient use of network
resources (since a circuit can communicate data from multiple connections).

Thou map of woe, that
thus dost talk in signs! Thou map of woe, that

thus dost talk in signs!

Sender
address

Destination

Original message address

broken into
numbered packets

[A]B[3]talk in signs |
[ATE]1]Thou map of woe, | [A]E]3Ttalk insigns |
|A|B]2|th5;thusdost |
|A]B]3 |talk in signs |

B[1{Thou map of woe, |

.
([t

A|B|3 |talk in signs

[A[B]2]that thus dost |

— [A]B]2]that thus dost |
A|E|3 [talk in signs |

Original message
reassembled from
packets

[A]B]1]Thou map of woe, | [ATET1TThou map of woe, |

Figure 1.4 Internet network as
example of packet switching

Figure 1.4 Full Alternative Text

This early ARPANET network was funded and controlled by the United
States government, and was used exclusively for academic and scientific
purposes. The early network started small, with just a handful of connected
university campuses and research institutions and companies in 1969, and
grew to a few hundred by the early 1980s.

At the same time, alternative networks were created like X.25 in 1974, which

allowed (and encouraged) business use. USENET, built in 1979, had fewer
restrictions still, and as a result grew quickly to 550 connected machines by
1981. Although there was growth in these various networks, the inability for
them to communicate with each other was a real limitation. To promote the
growth and unification of the disparate networks, a suite of protocols was
invented to unify the networks. A protocol is the name given to a formal set
of publicly available rules that manage data exchange between two points.
Communications protocols allow any two computers to talk to one another,
so long as they implement the protocol.

By 1981, protocols for the Internet were published and ready for use.l2 New
networks built in the United States began to adopt the TCP/IP
(Transmission Control Protocol/Internet Protocol) communication model
(discussed in the next section), while older networks were transitioned over
to it.

Any organization, private or public, could potentially connect to this new
network so long as they adopted the TCP/IP protocol. On January 1, 1983,
TCP/IP was adopted across all of ARPANET, marking the end of the
research network that spawned the Internet.2 Over the next two decades,
TCP/IP networking was adopted across the globe.

1.2.2 The Birth of the Web

The next decade saw an explosion in the number of users, but the Internet of
the late 1980s and the very early 1990s did not resemble the Internet we
know today. During these early years, email and text-based systems were the
extent of the Internet experience.

This transition from the old terminal and text-only Internet of the 1980s to the
Internet of today is due to the invention and massive growth of the web. This
invention is usually attributed to the British Tim Berners-Lee (now Sir Tim
Berners-Lee), who, along with the Belgian Robert Cailliau, published a
proposal in 1990 for a hypertext system while both were working at CERN
(European Organization for Nuclear Research) in Switzerland. Shortly

thereafter Berners-Lee developed the main features of the web.4

This early web incorporated the following essential elements that are still the
core features of the web today:

e A Uniform Resource Locator (URL) to uniquely identify a resource on
the WWW.

e The Hypertext Transfer Protocol (HTTP) to describe how requests and
responses operate.

e A software program (later called web server software) that can respond
to HT'TP requests.

e Hypertext Markup Language (HTML) to publish documents.

e A program (later called a browser) that can make HTTP requests to
URLSs and that can display the HTML it receives.

URLs and the HTTP are covered in this chapter. This chapter will also
provide a little bit of insight into the nature of web server software; HTML
will require several chapters to cover in this book. Chapter 22 will examine
the inner workings of server software in more detail.

So while the essential outline of today's web was in place in the early 1990s,
the web as we know it did not really begin until Mosaic, the first popular
graphical browser application, was developed at the National Center for
Supercomputing Applications at the University of Illinois Urbana-Champaign
and released in early 1993 by Eric Bina and Marc Andreessen (who was a
computer science undergraduate student at the time). Andreessen later moved
to California and cofounded Netscape Communications, which released
Netscape Navigator in late 1994. Navigator quickly became the principal web
browser, a position it held until the end of the 1990s, when Microsoft's
Internet Explorer (first released in 1995) became the market leader, a position
it would hold for over a decade.

Also in late 1994, Berners-Lee helped found the World Wide Web
Consortium (W3C), which would soon become the international standards
organization that would oversee the growth of the web. This growth was very
much facilitated by the decision of CERN to not patent the work and ideas

done by its employee and instead leave the web protocols and code-base
royalty free.

To illustrate the growth of the Internet, Figure 1.5 graphs the count of hosts
connected to the Internet from 1990 until 2015. You can see that the last
decade in particular has seen enormous growth, during which social
networks, web services, asynchronous applications, the semantic web, and
more have all been created (and will be described fully in due course in this

textbook).

1,200,000,000 ~
1,000,000,000
800,000,000
600,000,000

400,000,000

Number of Internet Hosts

200,000,000

1995 2000 2005 2010 2015
Year

Figure 1.5 Growth in Internet
hosts/servers based on data

from the Internet Systems

Consortium?

Figure 1.5 Full Alternative Text

mBackground

The Request for Comments (RFC) archive lists all of the Internet and WWW
protocols, concepts, and standards. It started out as an unofficial repository
for ARPANET information and eventually became the de facto official
record. Even today new standards are published there.

1.2.3 Web Applications in
Comparison to Desktop
Applications

The user experience for a website is unlike the user experience for traditional
desktop software. The location of data storage, limitations with the user
interface, and limited access to operating system features are just some of the
distinctions. However, as web applications have become more and more
sophisticated, the differences in the user experience between desktop
applications and web applications are becoming more and more blurred.

There are a variety of advantages and disadvantages to web-based
applications in comparison to desktop applications. Some of the advantages
of web applications include the following:

e Accessible from any Internet-enabled computer.
e Usable with different operating systems and browser applications.

e Easier to roll out program updates since only software on the server
needs to be updated as opposed to every computer in the organization
using the software.

e Centralized storage on the server means fewer security concerns about
local storage (which is important for sensitive information such as health

care data).

Unfortunately, in the world of IT, for every advantage, there is often a
corresponding disadvantage; this is also true of web applications. Some of
these disadvantages include the following:

e Requirement to have an active Internet connection (the Internet is not
always available everywhere at all times).

e Security concerns about sensitive private data being transmitted over the
Internet.

e Concerns over the storage, licensing, and use of uploaded data.

e Problems with certain websites not having an identical appearance
across all browsers.

e Restrictions on access to operating system resources can prevent
additional software from being installed and hardware from being
accessed (like Adobe Flash on iOS).

¢ In addition, clients or their IT staff may have additional plugins added to
their browsers, which provide added control over their browsing
experience, but which might interfere with JavaScript, cookies, or
advertisements.

We will continually try to address these challenges throughout the book.

EDive Deeper

One of the more common terms you might encounter in web development is
the term “intranet” (with an “a”), which refers to an internal network using
Internet protocols that is local to an organization or business. Intranet
resources are often private, meaning that only employees (or authorized
external parties such as customers or suppliers) have access to those
resources. Thus, “Internet” (with an “e”) is a broader term that encompasses

both private (intranet) and public networked resources.

Intranets are typically protected from unauthorized external access via
security features such as firewalls or private IP ranges, as shown in Figure 1.6
. Because intranets are private, search engines, such as Google have limited
or no access to content within them.

Due to this private nature, it is difficult to accurately gauge, for instance, how
many web pages exist within intranets, and what technologies are more
common in them. Some especially expansive estimates guess that almost half
of all web resources are hidden in private intranets.

_ Financal and otrer Offsite workers might be
ghy, enterprise systems able to access intemal
H system.

Firewall

ublic can't
access i_ntemal
computing

Firewall s
: Public can
access public
\ Customers and corporate web system.
partners might be able to

access internal system.

Figure 1.6 Intranet versus
Internet

Figure 1.6 Full Alternative Text

Being aware of intranets is also important when one considers the job market
and market usage of different web technologies. If one focuses just on the
public Internet, it will appear that PHP, MySQL, and WordPress are the most
commonly used web development stack. But when one adds in the private
world of corporate intranets, other technologies such as ASP.NET, JSP,
SharePoint, Oracle, SAP, and IBM WebSphere are just as important.

1.2.4 Static Websites versus
Dynamic Websites

In the earliest days of the web, a webmaster (the term popular in the 1990s
for the person who was responsible for creating and supporting a website)
would publish web pages and periodically update them. Users could read the
pages but could not provide feedback. The early days of the web included
many encyclopedic, collection-style sites with lots of content to read (and
animated icons to watch).

In those early days, the skills needed to create a website were pretty basic:
one needed knowledge of HTML and perhaps familiarity with editing and
creating images. This type of website is commonly referred to as a static
website, in that it consists only of HTML pages that look identical for all
users at all times. Figure 1.7 illustrates a simplified representation of the
interaction between a user and a static website.

o | want to see
vacation.html

/”'

) Browser
displays files

o Server retrieves files
from its hard drive

9 "

9 Server "sends" HTML
and then later the image
to browser

vacatin.htm 3

picture.jpg

Figure 1.7 Static website

Figure 1.7 Full Alternative Text

Within a few years of the invention of the web, sites began to get more
complicated as more and more sites began to use programs running on web
servers to generate content dynamically. These server-based programs would
read content from databases, interface with existing enterprise computer
systems, communicate with financial institutions, and then output HTML that
would be sent back to the users' browsers. This type of website is called a
dynamic server-side website because the page content is being created at run
time by a program created by a programmer; this page content can vary from
user to user. Figure 1.8 illustrates a very simplified representation of the
interaction between a user and a dynamic website.

o | want to see
N/ vacation.php

o Browser

displays files

e Server recognizes
that it must run a
dynamic script that
is on its hard drive.

Server "sends"

generated HTML
and the image
file to user. =
? 0 Server executes
or interprets
9“ , 9= the script.
0 scripts —

"outputs” HTML —
vacation.php
[#]

L J

Figure 1.8 Dynamic Server-
Side website

Figure 1.8 Full Alternative Text

So while knowledge of HTML was still necessary for the creation of these
dynamic websites, it became necessary to have programming knowledge as
well. Moreover, by the late 1990s, additional knowledge and skills were
becoming necessary, such as CSS, usability, and security.

1.2.5 Web 2.0 and Beyond

In the mid-2000s, a new buzzword entered the computer lexicon: Web 2.0.
This term had two meanings, one for users and one for developers. For the
users, Web 2.0 referred to an interactive experience where users could
contribute and consume web content, thus creating a more user-driven web
experience. Some of the most popular websites today fall into this category:
Facebook, YouTube, and Wikipedia. This shift to allow feedback from the
user, such as comments on a story, threads in a message board, or a profile on
a social networking site has revolutionized what it means to use a web
application.

For software developers, Web 2.0 also referred to a change in the paradigm
of how dynamic websites are created. Programming logic, which previously
existed only on the server, began to migrate to the browser (see Figure 1.9).
This required learning JavaScript, a rather tricky programming language that
runs in the browser, as well as mastering the rather difficult programming
techniques involved in asynchronous communication.

o | want to see
vacation.php

0 Browser
displays HTML
as modified
by the
Javascript.

o Server recognizes
that it must run a
dynamic script that
is on its hard drive.

R Y

(6 ' (@ Javascript may ™,
Browser “\ make additional }
executes “Tequests. '
the Javascript. ™ vseeeoonnnes > @

et
[D
o Scripts De Server executes

"outputs” HTML or interprets
Server "sends” o the script.
generated HTML —
along with vacation.php
JavaScript to user.

Figure 1.9 Dynamic websites
today

Figure 1.9 Full Alternative Text

Web development in the Web 2.0 world is significantly more complicated
today than it was even a decade ago. While this book attempts to cover all the
main topics in web development, in practice, it is common for a certain

division of labor to exist. The skills to create a good-looking static web page
are not the same as those required to write software that facilitates user
interactions. Many programmers are poor visual user interface designers, and
many designers can't program. This separation of software creation and visual
user interface design is essential for any complex Web 2.0 application.

Chapters on HTML and CSS are essential for learning about layout and
design best practices. Later chapters on server and client-side programming
build on those design skills, but go far beyond them. To build modern
applications you (or your team) must have both sets of skills.

1.2.6 Sociotechnological Integration
—Web Science

In recent years, researchers in areas outside of computing have begun
studying the impact of the web on society. Consider for a moment how we
manage and share our photos, videos, and messages with one another; this
marks a major departure from how we would have done these things only a
decade or two ago. These changes (both small and large) to our societal
systems originated with innovations on the web and warrant study in their
own right.

EDive Deeper

When a system is known by a 1.0 and 2.0, people invariably speculate on
what the 3.0 version will look like. If there will be a Web 3.0, what it will
look like is uncertain. Some people have, however, argued that Web 3.0 will
be something called the semantic web.

Semantic is a word from linguistics that means, quite literally, “meaning.”
The semantic web thus adds context and meaning to web pages in the form of
special markup. These semantic elements would allow search engines and
other data-mining agents to make sense of the content.

Currently, a block of text on the web could be anything: a poem, an article, or
a copyright notice. Search engines at present mainly just match the text you
are searching for with text in the page. Currently, these search engines have
to use sophisticated algorithms to try to figure out what the page is all about.
While we humans can easily (and quickly) determine the broad essence of a
page's content, it is much harder for a computer algorithm to do the same.

The goal of the semantic web is to make it easier to figure out those
meanings, thereby dramatically improving the nature of search on the web.
Currently, there are a number of semistandardized, but complicated,
approaches for adding semantic qualifiers to HTML; some examples include
RDF (Resource Description Framework), OWL (Web Ontology Language),
and SKOS (Simple Knowledge Organization System). In recent years, a
simplified approach for adding semantic information to web pages, known as
schema.org, has become popular. We will briefly cover schema.org in the
final section of Chapter 5.

If you look at each interaction on the web as more than just a technical
exchange using protocols and file transmission, you can see there is often an
underlying social need motivating each exchange. The technical system
facilitates a social interaction and social interactions span nearly the entire
human experience, so there is now an entire area of study looking at the web
as a sociotechnical system. Web Science, as it is known, studies the
sociotechnical systems that apply the web in areas as diverse as finance,
politics, activism, romance, and hate speech. This is just another example of
how the web can facilitate entirely new areas of study.

http://schema.org
http://schema.org

1.3 The Client-Server Model

The previous section made use of the terms “client” and “server.” It is now
time to define these words. The web is sometimes referred to as a client-
server model of communications. In the client-server model, there are two
types of actors: clients and servers. The server is a computer agent that is
normally active 24/7, listening for requests from clients. A client is a
computer agent that makes requests and receives responses from the server,
in the form of response codes (you will learn about these in Chapter 2),
images, text files, and other data.

1.3.1 The Client

Client machines are the desktops, laptops, smart phones, and tablets you see
everywhere in daily life. These machines have a broad range of specifications
regarding operating system, processing speed, screen size, available memory,
and storage. The essential characteristic of a client is that it can make requests
to particular servers for particular resources using URLs and then wait for the
response. These requests are processed in some way by the server.

In the most familiar scenario, client requests for web pages come through a
web browser. But a client can be more than just a web browser. When your
word processor's help system accesses online resources, it is a client, as is an
iOS game that communicates with a game server using HTTP. Sometimes a
server web program can even act as a client. For instance, later in Chapter 19,
our sample PHP websites will consume web services from service providers,
such as Flickr and Microsoft; in those cases, our PHP application will be
acting as a client.

1.3.2 The Server

The server in this model is the central repository, the command center, and

the central hub of the client-server model. It hosts web applications, stores
user and program data, and performs security authorization tasks. Since one
server may serve many thousands, or millions of client requests, the demands
on servers can be high. A site that stores image or video data, for example,
will require many terabytes of storage to accommodate the demands of users.
A site with many scripts calculating values on the fly, for instance, will
require more CPU and RAM to process those requests in a reasonable
amount of time.

The essential characteristic of a server is that it is listening for requests, and
upon getting one, responds with a message. The exchange of information
between the client and server is summarized by the request-response loop.

1.3.3 The Request-Response Loop

Within the client-server model, the request-response loop is the most basic
mechanism on the server for receiving requests and transmitting data in
response. The client initiates a request to a server and gets a response that
could include some resource like an HTML file, an image, or some other
data, as shown in Figure 1.10 . This response can also contain other
information about the request, or the resource provided, such as response
codes, cookies, and other data.

Response

Figure 1.10 Request-response
loop

Figure 1.10 Full Alternative Text

1.3.4 The Peer-to-Peer Alternative

It may help your understanding to contrast the client-server model with a
different network topology. In the peer-to-peer model, shown in Figure 1.11 ,
where each computer is functionally identical, each node (i.e., computer) is
able to send and receive data directly with one another. In such a model, each
peer acts as both a client and server, able to upload and download
information. Neither is required to be connected 24/7, and each computer is
functionally equal. The client-server model, in contrast, defines clear and
distinct roles for the server. Video chat and bit torrent protocols are examples
of the peer-to-peer model.

Figure 1.11 Peer-to-peer model

Figure 1.11 Full Alternative Text

1.3.5 Server Types

In Figure 1.10 , the server was shown as a single machine, which is fine from
a conceptual standpoint. Clients make requests for resources from a URL; to
the client, the server is a single machine.

However, most real-world websites are typically not served from a single

server machine, but by many server machines. It is common to split the
functionality of a website between several different types of server, as shown
in Figure 1.12 . These include the following:

Web servers. A web server is a computer servicing HTTP requests. This
typically refers to a computer running web server software, such as
Apache or Microsoft IIS (Internet Information Services).

Application servers. An application server is a computer that hosts and
executes web applications, which may be created in PHP, ASP.NET,
Ruby on Rails, or some other web development technology.

Database servers. A database server is a computer that is devoted to
running a Database Management System (DBMS), such as MySQL,
Oracle, or MongoDB, that is being used by web applications.

Mail servers. A mail server is a computer creating and satisfying mail
requests, typically using the Simple Mail Transfer Protocol (SMTP).

Media servers. A media server (also called a streaming server) is a
special type of server dedicated to servicing requests for images and
videos. It may run special software that allows video content to be
streamed to clients.

Authentication servers. An authentication server handles the most
common security needs of web applications. This may involve
interacting with local networking resources, such as LDAP (Lightweight
Directory Access Protocol) or Active Directory.

Figure 1.12 Different types of
server

Figure 1.12 Full Alternative Text

In smaller sites, these specialty servers are often the same machine as the web
server.

1.3.6 Real-World Server

Installations

The previous section briefly described the different types of server that one
might find in a real-world website. In such a site, not only do these different
types of servers run on separate machines, but there is often replication of
each of the different server types. A busy site can receive thousands or even
tens of thousands of requests a second; globally popular sites such as
Facebook receive millions of requests a second.

A single web server that is also acting as an application or database server
will be hard-pressed to handle more than a few hundred requests a second, so
the usual strategy for busier sites is to use a server farm. The goal behind
server farms is to distribute incoming requests between clusters of machines
so that any given web or data server is not excessively overloaded, as shown
in Figure 1.13 . Special devices called load balancers distribute incoming
requests to available machines.

Figure 1.13 Server farm

Figure 1.13 Full Alternative Text

Even if a site can handle its load via a single server, it is not uncommon to
still use a server farm because it provides failover redundancy; that is, if the
hardware fails in a single server, one of the replicated servers in the farm will
maintain the site's availability.

In a server farm, the computers do not look like the ones in your house.
Instead, these computers are more like the plates stacked in your kitchen
cabinets. That is, a farm will have its servers and hard drives stacked on top
of each other in server racks. A typical server farm will consist of many
server racks, each containing many servers, as shown in Figure 1.14 .

Fiber channel switches

Rack management server

Test server

Keyboard tray and flip-up monitor

Patch panel

Production web server

Production data server

RAID HD arrays

Patch panel

Production web server

Production data server

Batteries and UPS

Figure 1.14 Sample server rack

Figure 1.14 Full Alternative Text

Server farms are typically housed in special facilities called data centers. A
data center will contain more than just computers and hard drives;
sophisticated air conditioning systems, redundancy power systems using
batteries and generators, specialized fire suppression systems, and security
personnel are all part of a typical data center, as shown in Figure 1.15 .

Server racks

generators

UPS (batteries)

Figure 1.15 Hypothetical data
center

Figure 1.15 Full Alternative Text

To prevent the potential for site downtimes, most large websites will exist in
mirrored data centers in different parts of the country, or even the world. As a
consequence, the costs for multiple redundant data centers are quite high (not
only due to the cost of the infrastructure but also due to the very large
electrical power consumption used by data centers), and only larger web
companies can afford to create and manage their own. Most web companies
will instead lease space from a third-party data center.

The scale of the web farms and data centers for large websites can be
astonishingly large. While most companies do not publicize the size of their
computing infrastructure, some educated guesses can be made based on the
publicly known IP address ranges and published records of a company's
energy consumption and their power usage effectiveness. In 2013, Microsoft
CEO Steve Ballmer provided some insight into the vast numbers of servers
used by the largest web companies: “We have something over a million
servers in our data center infrastructure. Google is bigger than we are.
Amazon is a little bit smaller. You get Yahoo! and Facebook, and then

everybody else is 100,000 units probably or less.”®

L“¥Note

It is also common for the reverse to be true—that is, a single server machine
may host multiple sites. Large commercial web hosting companies, such as
GoDaddy, BlueHost, Dreamhost, and others will typically host hundreds or
even thousands of sites on a single machine (or mirrored on several servers).

This type of shared use of a server is sometimes referred to as shared hosting
or a virtual server (or virtual private server). You will learn more about
hosting and virtualization in Chapter 22.

1.4 Where Is the Internet?

It is quite common for the Internet to be visually represented as a cloud,
which is perhaps an apt way to think about the Internet given the importance
of light and magnetic pulses to its operation. To many people using it, the
Internet does seem to lack a concrete physical manifestation beyond our
computer and cell phone screens.

But it is important to recognize that our global network of networks does not
work using magical water vapor, but is implemented via millions of miles of
copper wires and fiber-optic cables connecting millions of server computers
and probably an equal number of routers, switches, and other networked
devices, along with thousands of air conditioning units and specially
constructed server rooms and buildings.

A detailed discussion of all the networking hardware involved in making the
Internet work is far beyond the scope of this text. We should, however, try to
provide at least some sense of the hardware that is involved in making the
web possible.

1.4.1 From the Computer to the
Local Provider

Andrew Blum, in his eye-opening book, Tubes: A Journey to the Center of
the Internet, tells the reader that he decided to investigate the question
“Where is the Internet” when a hungry squirrel gnawing on some outdoor
cable wires disrupted his home connection, thereby making him aware of the
real-world texture of the Internet. While you may not have experienced a
similar squirrel problem, for many of us, our main experience of the
hardware component of the Internet is that which we experience in our
homes. While there are many configuration possibilities, Figure 1.16 does
provide an approximate simplification of a typical home to local Internet

Server Provider (or ISP) setup.

Figure 1.16 Internet hardware
from the home computer to the
local Internet provider

Figure 1.16 Full Alternative Text

The broadband modem, also called a cable modem or DSL (digital subscriber
line) modem, is a bridge between the network hardware outside the house
(typically controlled by a phone or cable company) and the network hardware
inside the house. These devices are often supplied by the ISP.

The wireless router is perhaps the most visible manifestation of the Internet in
one's home, in that it is a device we typically need to purchase and install
(although many companies will provide and install these as part of the setup
process). Routers are in fact one of the most important and ubiquitous
hardware devices that make the Internet work. At its simplest, a router is a
hardware device that forwards data packets from one network to another
network. When the router receives a data packet, it examines the packet's
destination address and then forwards it to another destination.

A router uses a routing table to help determine where a packet should be sent.
It is a table of connections between target addresses and the destination
(typically another router) to which the router can deliver the packet. In Figure
1.17, the different routing tables use next-hop routing, in which the router
only knows the address of the next step of the path to the destination; it
leaves it to that next step to continue the routing process. The packet thus
makes a variety of successive hops until it reaches its destination. There are a
lot of details that have been left out of this particular illustration. Routers will
make use of submasks, timestamps, distance metrics, and routing algorithms
to supplement or even replace routing tables; but those are all topics for a
network architecture course.

Sender address
142.109.149.46

142.109.149.46 {209.202.161.240 | 1 |Thou map of woe,

\ Routing table
Address

Sender address Destination Nestikp
address 0.000 127.0.01
20470.198.182 | 65.47.2429
Router address 209.202.161.240| 65472429
| 2868173 | 9012412
etc,
Destination address

209.202.161.240

Address Next Hop

20868173 | 1402391911

Router address

142,109,149.146 | 140.239.191.1

66.37.223.130 05.47.2429

Router address

209.202.161.240 | ©6.37.223.130

etc,

Router address

204.70,198.182

Addrass Next Hop

Address Next Hop 142.109.149.146 | 6547.2029

142.109.M5.145 | 66.37.223.130 209202161240 | 204.70.198.182
elc. etc.

Figure 1.17 Simplified routing
tables

Figure 1.17 Full Alternative Text

Once we leave the confines of our own homes, the hardware of the Internet
becomes much murkier. In Figure 1.16 , the various neighborhood broadband
cables (which are typically using copper, aluminum, or other metals) are

aggregated and connected to fiber optic cable via fiber connection boxes.
Fiber optic cable (or simply optical fiber) is a glass-based wire that transmits
light and has significantly greater bandwidth and speed in comparison to
metal wires. In some cities (or large buildings), you may have fiber optic
cable going directly into individual buildings; in such a case, the fiber
junction box will reside in the building.

These fiber optic cables eventually make their way to an ISP's head-end,
which is a facility that may contain a cable modem termination system
(CMTYS) or a digital subscriber line access multiplexer (DSLAM) in a DSL-
based system. This is a special type of very large router that connects and
aggregates subscriber connections to the larger Internet. These different head-
ends may connect directly to the wider Internet, or instead be connected to a
master head-end, which provides the connection to the rest of the Internet.

1.4.2 From the Local Provider to the
Ocean's Edge

Eventually your ISP has to pass on your requests for Internet packets to other
networks. This intermediate step typically involves one or more regional
network hubs. Your ISP may have a large national network with optical fiber
connecting most of the main cities in the country. Some countries have
multiple national or regional networks, each with their own optical network.
Canada, for instance, has three national networks that connect the major cities
in the country as well as connect to a couple of the major Internet exchange
points in the United States. There are also several provincial networks that
connect smaller cities within one or two provinces. Alternatively, a smaller
regional ISP may have transit arrangements with a larger national network
(that is, they lease the use of part of the larger network's bandwidth).

A general principle in network design is that the fewer the router hops (and
thus the more direct the path), the quicker the response. Figure 1.18 illustrates
some hypothetical connections between several different networks spread
across four countries. As you can see, just like in the real world, the countries
in the illustration differ in their degree of internal and external

interconnectedness.

Network A3

/ '\ Network C1

Network C2

&

4 Network A2

\\-. "".

&

\'\CuuntryA _~ CountryB

'\.\ /
Network B1 ~ /

/

Cuuntry D

Figure 1.18 Connecting
different networks within and
between countries

Figure 1.18 Full Alternative Text

The networks in Country A are all interconnected, but rely on Network A1 to
connect them to the networks in Country B and C. Network B1 has many
connections to other countries' networks. The networks within Country C and
D are not interconnected, and thus rely on connections to international
networks in order to transfer information between the two domestic networks.
For instance, even though the actual distance between a node in Network C1
and a node in C2 might only be a few miles, those packets might have to
travel many hundreds or even thousands of miles between networks A1
and/or B1.

Clearly, this is an inefficient system, but is a reasonable approximation of the

state of the Internet in the late 1990s (and in some regions of the world, this is
still the case), when almost all Internet traffic went through a few Network
Access Points (NAP), most of which were in the United States.

This type of network configuration began to change in the 2000s, as more
and more networks began to interconnect with each other using an Internet
exchange point (IX or IXP). These IXPs allow different ISPs to peer (that is,
interconnect) with one another in a shared facility, thereby improving
performance for each partner in the peer relationship.

Figure 1.19 illustrates how the configuration shown in Figure 1.18 changes
with the use of IXPs.

\ - . Network D2
\ " xpatl B8 N)
Country A Country B F g Country D

Figure 1.19 National and
regional networks using
Internet exchange points

Figure 1.19 Full Alternative Text

As you can see, IXPs provide a way for networks within a country to

interconnect. Now networks in Countries C and D no longer need to make
hops out of their country for domestic communications. Notice as well that
for each of the IXPs, there are connections not only with networks within
their country, but also with other countries' networks as well. Multiple paths
between IXPs provide a powerful way to handle outages and keep packets
flowing. Another key strength of IXPs is that they provide an easy way for

networks to connect to many other networks at a single location.?

As you can see in Figure 1.20 , different networks connect not only to other
networks within an IXP, but to the networks of large companies, such as
Microsoft and Facebook are also connecting to multiple other networks
simultaneously as a way of improving the performance of their sites. Real
IXPs, such as at Palo Alto (PAIX), Amsterdam (AMS-IX), Frankfurt (CE-
CIX), and London (LINX), allow many hundreds of networks and companies
to interconnect and have throughput of over 1000 gigabits per second. The
scale of peering in these IXPs is way beyond that shown in Figure 1.20
(which shows peering with only five others); companies within these IXPs
use large routers from Cisco and Brocade that have hundreds of ports
allowing hundreds of simultaneous peering relationships.

Figure 1.20 Hypothetical
Internet exchange point

Figure 1.20 Full Alternative Text

In recent years, major web companies have joined the network companies in
making use of IXPs. As shown in Figure 1.21 , this sometimes involves
mirroring (duplicating) a site's infrastructure (i.e., web and data servers) in a
data center located near the IXP. For instance, Equinix Ashburn IX in
Ashburn, Virginia, is surrounded by several gigantic data centers just across
the street from the IXP. This real-world geographic correspondence to the
digital world encapsulates an arrangement that benefits both the networks and
the web companies. The website will have incremental speed enhancements
(by reducing the travel distance for these sites) across all the networks it is
peered with at the IXP, while the network will have improved performance
for its customers when they visit the most popular websites.

N
\
\
y
\
]
\
I

Figure 1.21 IXPs and data
centers

Figure 1.21 Full Alternative Text

1.4.3 Across the Oceans

Eventually, international Internet communication will need to travel
underwater. The amount of undersea fiber optic cable is quite staggering and
is growing yearly. As can be seen in Figure 1.22 , over 250 undersea fiber

optic cable systems operated by a variety of different companies span the
globe. For places not serviced by undersea cable (such as Antarctica, much of
the Canadian Arctic islands, and other small islands throughout the world),
Internet connectivity is provided by orbiting satellites. It should be noted that
satellite links (which have smaller bandwidth in comparison to fiber optic)
account for an exceptionally small percentage of oversea Internet
communication.

Figure 1.22 Undersea fiber
optic cables

(courtesy TeleGeography/www.submarinecablemap.com)

Figure 1.22 Full Alternative Text

1.5 Working in Web Development

At the beginning of the chapter, Figure 1.1 illustrated the complex ecosystem
that is contemporary web development. Seeing that diagram, you should not
be surprised to learn that there are many different jobs that one can do within
the web development world. This final section of the chapter will try to
clarify some of these employment possibilities available with web
development.

Fifteen years ago, this would have been a much simpler section. Back then,
there were web developers, web designers, and webmasters. However, as the
web has evolved and expanded in complexity, the range of roles (and the
names used to describe them) has also expanded. Furthermore, the
terminology to describe web development activities keeps changing. Ten
years ago, a web programmer was someone who did server-side
development, perhaps in PHP or ASP.NET. As JavaScript became more
important to web development, a distinction between front-end development
(JavaScript) and back-end development (PHP/ASP.NET/etc) made its way
into high-tech job ads. As you can see in the following list, today there are
even more distinctions in the web development job world.8?

With so many distinct areas that one can become an expert in, it's comforting
to realize that web development is a team effort. Building and maintaining a
web presence requires more than technical ability, and many brilliant
developers are not also brilliant artists, designers, managers, and marketing
experts. Working in the world of web development therefore usually requires
a team of people with various complementary skill sets as well as some areas
of overlap and cooperation.

1.5.1 Roles and Skills

As a student of web development, you might be interested in knowing which
jobs are out there and which skills are required for them. This list of job titles

(illustrated a little cheekily in Figure 1.23) provides an overview of the roles
typically available in a web development company as part of a team. A
crucial factor beyond the job description is the type and culture of the
company, summarized in the next section.

Figure 1.23 Web development
roles and skills

Figure 1.23 Full Alternative Text

Hardware Architect/Network
Architect/Systems Engineer

The people who design the specifications for the servers in a data center, and
design and manage the layout of the physical and logical network are
essential somewhere along the way, whether at your company or your host's.
Typically, these roles require networking and operating systems knowledge
that is usually covered in other computing courses outside of web
development.

System Administrator

Once the system is built and wired to the network, system administrators are
the next people required to get things up and running. Often they choose and
install the network operating system, then manage the shared operating
system environments for other users. This position is often combined with the
hardware architect in smaller firms, and is on call, since a broken hard drive
on Saturday morning cannot wait two days to be fixed.

Database Administrator/Data
Architect

The database administrator (sometimes abbreviated as DBA) is a role found
in larger companies. In these companies, there are many databases, often
from many divisions, all of which need to be managed, secured, and backed
up. Database administrators will perform maintenance on the databases as
well as manage access for user and software accounts. They sometimes write
triggers and advanced queries for users upon request as well as manage
database indexes.

A data architect has some overlap with database administrator, but the role is
more focused on the design and integration of data. In recent years, managing
and making use of large sets of often unrelated data has become increasingly
important for web companies. In smaller companies, these different data roles
are often combined with the system administrator and/or developer ones.

Security
Specialist/Consultant/Expert

A good system administrator and network architect will certainly have
insights into security as they perform their duties. However, because security
is so vital to web development in general, and because the knowledge
necessary to do security work is complicated and ever changing, it is not
uncommon for companies to outsource their security needs to security
specialists. These specialists will test for vulnerabilities, implement security
best practices, and make updates and changes to programming code or
hardware infrastructure to protect a site against well-known or newly
emerging (called zero-hour) threats.

Developer/Programmer

Programmers can be assigned a wide range of tasks aside from simple
coding. Writing good documentation, using version control software,
engaging in code reviews, running test cases, and more might be typical
tasks, depending on company practices. Programmer positions often begin at
the entry level, with higher-level design decisions left to software engineers
and senior developers. In terms of the web development world, the terms
programmers or developer are quite broad; typically, however, this term is
used to indicate a job focused more on server-side development using
languages like PHP.

Front-End Developer/UX Developer

Increasingly complex front-end development requires software developers
with an aptitude for graphical user interface design (nowadays more typically
referred to as user-experience or UX design) and an understanding of human—
computer interaction (HCI) principals. This typically requires in-depth
JavaScript expertise along with good CSS skills. Another increasingly
commonly used synonym for front-end developer is UX developer. The main
difference between a UX developer and a UX/UI designer (described below),
is that the UX developer is involved mainly in the implementation of the user
experience and less in the actual design of it.

Software Engineer

A software engineer is a programmer who is adept at the language of analysis
and design, and uses established best practices in the development of
software. Sometimes the role of a programmer and software engineer are
used interchangeably, but a software engineer has more knowledge of the
software development life cycle and can effectively gather requirements and
speak with clients about technical and business matters.

UX Designer/UI
Designer/Information Architect

These are names used somewhat interchangeably for jobs that focus on the
structure, design and usability of a website. Once referred to as the user
interface, the term UX has become the preferred term because improving how
a website is used is just as important (or even more important) nowadays as
improving how a website appears. While coding skills can be helpful, this
type of work more often involves the development of prototypes, making
mockup designs, and analyzing user experience data. In larger web
development firms, this type of work also commonly involves working in
conjunction with creatives in the art department.

Tester/Quality Assurance

Testers are the people who try to identify flaws in software before it gets
released. This type of work is often called quality assurance (QA). Although
some test roles are for nonexperts, many testers know how to program and
might write automated tests as well as develop testing plans from
requirements. Although these duties are often integrated with developers,
they can form a job all their own.

SEO Specialist

Search engine optimization (SEO) refers to the process of improving the
discoverability of web content by search engines. Chapter 23 covers both the
above board (as well as the under-handed) techniques used to improve SEO
results. An SEQO specialist needs to be familiar with these techniques as well
as analytics, testing approaches, social networking APIs, and even content
creation strategies.

Content Strategists/Marketing
Technologist

Regardless of technological features, websites ultimately succeed due to the
quality of their content. A content strategist (sometimes also called a
marketing technologist) is someone who uses his or her experience with
existing and emerging web technologies in conjunction with knowledge
about the audience to craft engaging web content. This type of work might
also be done by an SEO specialist or an information architect. Writing and
marketing skills as well as knowledge of content management systems, email
services, and social networking interfaces are important for this job.

Project Manager/Product Manager

Websites are complicated projects often involving the work of many different
people with different skill sets and personalities. Getting all these people to
work together in a timely and effective manner typically requires the
committed effort and knowledge of project managers (also called product
managers). Knowledge of planning and estimation methodologies is helpful,
as are more general people management skills.

Business Analyst

Although a software engineer in an analysis role might speak to clients and
get requirements, that role is often given a different name and assigned to
someone with especially good communication skills. A business analyst is
the interface between the various divisions of the company and the website
(and IT in general). These people can easily speak to the HR, marketing, and
legal divisions, and then translate those requirements into tasks that software
engineers can take on.

Nontechnical Roles

Aside from all the technical roles above, there are additional important roles
that require expertise outside of technology. These roles include traditional
ones found in almost every company: accountants, writers, designers, editors,
lawyers, salespeople, and managers. There are also a wide variety of new
roles that are unique to the web space,? such as analytics manager, motion
designer, social media analyst, cloud architect, and the intriguingly named
growth hacker. Getting people from different backgrounds with different
expertise to work together is how companies balance the business,
technology, and art of website development.

e23Pro Tip

Two new terms are becoming increasingly popular in regards to web

development employment. One of these is full-stack developer. In the list of
web roles, you will see that specialization of skills is the main focus. A full-
stack developer is the opposite. In Figure 1.23 , you can see the full-stack
developer appears multiple times, roaming up and down the stairs between
different job roles. This was our way of visualizing the unique (some say
impossible) nature of the full-stack developer.

Rather than specializing in server-side development, or client-side user
experience construction, or database administration, a full-stack developer
ideally has competency and experience in all of these domains. Indeed, many
companies even expect full-stack developers to be knowledgeable about
various system administration tasks, such as setting up a web server and
handling security issues. Looking at the list of chapters in this book, you will
see that this is in fact the goal of the book: to turn the reader into a full-stack
developer!

Another term that is used in conjunction with web development employment
is DevOps (Development and Operations). Like the above full-stack
developer, DevOps refers to integration rather than specialization. For most
people who use the term, DevOps refers to a development methodology in
which developers, testers, and others on the operations or hardware side work
together right from the beginning of the development processll. We have
tried to integrate a little bit of the DevOps ideals into the design of our
textbook by discussing in this chapter some of the typical deployment
infrastructures of real-world web sites. Chapter 22 on server administration
and virtualization focuses on the operations side of web development. That
chapter appears late in the book, but that does not mean its contents are not
important. From a DevOps perspective, it contains vital information for web
developers, and we encourage the reader to be willing to explore DevOps in
more detail.

1.5.2 Types of Web Development
Companies

A major factor to consider when thinking about a career in web development

is what kind of company you want to work for. Sure, everyone needs a
website, but there are multiple kinds of companies that work together to make
that a possibility (illustrated in Figure 1.24).

Figure 1.24 Web development
companies

Figure 1.24 Full Alternative Text

Hosting Companies

Back in section 1.3.6, we learned that there are companies that will manage
servers on your behalf. These hosting companies or data centers offer many
employment opportunities, especially related to hardware, networking, and
system administration roles.

Design Companies

Design companies are at the opposite end of the spectrum, with few technical
positions available. These firms will provide professional artistic and design
services that might go beyond the web and include logos and branding in
general. Some companies produce mockups in Photoshop, for example,
which a web developer (at another company) can then turn into a website.

Website Solution Companies

Website solution companies focus on the programming and deployment of
websites for their clients. There are technical positions to help manage the
existing sites (working in conjunction with hosting companies) as well as
development jobs to build the latest custom site.

Vertically Integrated Companies

Vertically integrated companies are increasingly becoming the one-stop shop
for web development. They are called vertically integrated because these
companies combine hosting, design, and application solutions into one
company. This allows these companies to achieve economies of scale and
appeal to nontechnical clients who can go there for all their web-related
needs, large or small.

Start-Up Companies

Start-up ventures in web development have been some of the biggest success
stories in the business world. Start-ups are often attractive places for new
graduates to work, with less competition from experienced candidates and
potentially lots of jobs available from developers to designers and system
administrators. The smaller start-ups companies often require full-stack
developers, who can take on any role from system administrator through to
lead developer.

Internal Web Development

Although many companies outsource their web presence, others assign the
work to an internal division, normally under the umbrella of I'T or marketing.
Although many of these roles are simple caretaker positions, others can be
quite engaging, requiring real programming expertise. Many companies have
lots of internal data they would not share with outsiders and thus prefer in-
house expertise for the development of web interfaces and systems to manage
and display that confidential data. Often these websites exist only with an
organization's Intranet rather than as public websites on the Internet.

EDive Deeper

When you are starting out as a web developer, it can be daunting to compete
in the web employment market. While a solid resume can help you, perhaps

the most crucial step in successfully landing web development work is the
creation of an online portfolio.

In the visual design fields, portfolios are an established and integral method
for demonstrating a student's abilities to prospective employees. In the web
development world, portfolios have also become an essential way to sell
yourself and your abilities. Arguably, an attractive and compelling online
portfolio is likely to be much more important than a printed resume.

We would strongly encourage you to construct a personal site that can act as
both a resume and a portfolio. Besides the usual biographical information,
what other sorts of things should you put in your portfolio? As a student, you
likely do not many (or any) real-world projects to show a prospective
employer. You do however have student projects, assignments, and lab
exercises. Display screen captures of your student work in your portfolio, and
describe the technologies and techniques you mastered in the creation of the
work. Be willing in your spare time to improve these works to make them
(and you) look more impressive.

If your skills center more on the programming side (that is, you have fewer
impressive visuals to show off), you may want to give prospective employers
access to your programming code. There are various ways of doing so.
Perhaps the most important one is the Github website (shown in Figure 1.25
), which we will cover in more depth later in the book. Github has become an
essential element in the contemporary web development workflow, so we
strongly recommend taking the time to learn it and make use of it.

€ 5 0 {} | & Garub, Inc [US) | haeps:/github.com/ron a4 B+ r0BO

0 Pull requests lssues Gist A+ G-

‘ Overview Repositanes 4 Stars 0 Followers 7 Fallowing 0
- -

Popular repositories

compd513-lab07 compd513-lab08
& for Lab07 Starting files for Labig
- @ HTHML HML Ve
Randy cunnully compd513-assignl funwebdey-2nd-codelistings
FConNoNy
: ’ Code listings for textbook Fundamentals of Web
Add abio o

* Canada
hittp:/ . randyconnolly.com

(5 Joined on Jan 5, 2016

43 contributions in the last year

Organizations i s
. - | W |
L
: BT
Contribution activity Jumpto = 16

MNovember 2016

sl ap aalh b ak fas dlds i
rCone -‘|.y Niads Mo vty et 1or this pencd,

Figure 1.25 The Github website

Figure 1.25 Full Alternative Text

If your skills and experience are mainly on the front-end side of web
development (that is, HTML, CSS, and JavaScript), code playgrounds such
as JSFiddle, JSBin, and codepen.io are another way for you to show off your

work. These code playgrounds are ideal for publicly sharing smaller snippets
of code, and are thus a great way to experiment and to demonstrate your
competencies in front-end technologies.

1.6 Chapter Summary

This chapter has been broad in its coverage of how the Internet and the web
work. It began with a short history of the Internet and how those early
choices are still affecting the web today. The chapter provided a picture of the
client and server as well as the hardware component of the web and the
Internet, from your home router, to gigantic web farms, to the many tentacles
of undersea and overland fiber optic cable. Finally, some insight into careers
and companies in web development provided the context where you will
eventually apply the skills learned by working through this textbook.

1.6.1 Key Terms

e application server

e authentication server

e bandwidth

¢ broadband modem

e cable modem termination system

e circuit switching

e client

e client-server model

e data center

e database server

e DevOps

dynamic website

failover redundancy

fiber optic cable

full-stack developer

HTTP
intranet

Internet exchange point (IX or IXP)

Internet service provider (ISP)

load balancers
mail server

media server

Mosaic

Netscape Navigator

Network Access Points (NAP)

next-hop routing

packet
packet switching

peer

peer-to-peer model

request

e Request for Comments (REC)

e request-response loop

® response

e router

e routing table

e semantic web

® server
e server farm
e server racks

e shared hosting

e static website

e user experience

e virtual server

e webmaster
e Web 2.0

e World Wide Web Consortium (W3C)

1.6.2 Review Questions

1. 1. What are the advantages of packet switching in comparison to circuit
switching?

2. 2. What are the five essential elements of the early web that are still the

core features of the modern web?

3. 3. Describe the relative advantages and disadvantages of web-based
applications in comparison to traditional desktop applications.

4. 4. What is an intranet?
5. 5. What is a dynamic web page? How does it differ from a static page?
6. 6. What does Web 2.0 refer to?

7. 7. What is the client-server model of communications? How does it
differ from peer-to-peer?

8. 8. Discuss the relationship between server farms, data centers, and
Internet exchange points. Be sure to provide a definition for each.

9. 9. What kinds of jobs are available in web development? That is,
describe the broad job categories within web development.

10. 10. What sorts of service can a company offer in the web development
world?

11. 11. What is a full-stack developer? What types of companies typically
hire full-stack developers?

1.6.3 References

1. 1.J. Postel, “Internet Protocol,” September 1981. [Online]. http://
www.rfc-editor.org/rfc/rfc791.txt.

2. 2.]. Postel, “Transmission Control Protocol,” September 1981.
[Online]. http://www.rfc-editor.org/rfc/rfc793.txt.

3. 3. R. Hauben, “From the ARPANET to the Internet,” 2001. [Online].
http://www.columbia.edu/~rh120/other/tcpdigest_paper.txt.

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.columbia.edu/~rh120/other/tcpdigest_paper.txt

10.

11.

4. T. Berners-Lee, “The World Wide Web Project,” December 1992.

[Online]. http://www.w3.org/History/19921103-hypertext/hypertext/
WWW/TheProject.html.

5. Internet Systems Consortium, “Internet host count history,” July
2012. [Online]. http://www.isc.org/solutions/survey/history.

6. http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-
microsoft-has-1-million-servers/.

7. P. S. Ryan and G. Jason, “A Primer on Internet Exchange Points for
Policymakers and Non-Engineers,” August 2012. http://ssrn.com/
abstract=2128103 or http://dx.doi.org/10.2139/ssrn.2128103.

8. S. Wainford, “What Skills Gap Exists in Web & Mobile
Development?” 2015. [Online]. http://firebuilder.com/research/.

9. C. Coyier. “Job Titles in the Web Industry,” 2013. [Online]. https://
css-tricks.com/job-titles-in-the-web-industry/.

10. K. Orrela, “41 Job Titles in Tech. Which one will be yours?” 2015.
[Online]. http://skillcrush.com/2015/03/05/41-tech-job-titles/.

11. M. Loukides, What is DevOps: Infrastructure as Code. O'Reilly
Media. 2012.

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://www.datacenterknowledge.com/archives/2013/07/15/ballmer-microsoft-has-1-million-servers/
http://ssrn.com/abstract=2128103
http://dx.doi.org/10.2139/ssrn.2128103
http://firebuilder.com/research/
https://css-tricks.com/job-titles-in-the-web-industry/
http://skillcrush.com/2015/03/05/41-tech-job-titles/

2 How the Web Works

Chapter Objectives

In this chapter you will learn ...
e The fundamental protocols that make the web possible
e How the domain name system works
e Why HTTP is more than just a four-letter abbreviation
e How browsers and servers work to exchange and interpret HTML

The World Wide Web (WWW) relies on a number of systems, protocols, and
technologies all working together in unison. Before learning about HTML
(Hypertext Markup Language) markup, CSS styling, JavaScript, and PHP
programming, you must understand the key web and Internet technologies
and protocols applicable to the web developer. This chapter describes crucial
web protocols and concepts, such as domain names, URLs, browsers, and
HTTP headers. While you may not remember everything fully after a first
reading, this chapter is worth coming back to later as concepts in subsequent
chapters on HTML, JavaScript, and PHP build on these practical and
fundamental ideas.

2.1 Internet Protocols

The Internet exists today because of a suite of interrelated communications
protocols. A protocol is a set of rules that partners use when they
communicate. We have already described one of these essential Internet
protocols back in Chapter 1, TCP/IP.

These protocols have been implemented in every operating system, and make
fast web development possible. If web developers had to keep track of packet
routing, transmission details, domain resolution, checksums, and more, it
would be hard to get around to the matter of actually building websites.
Despite the fact that these protocols work behind the scenes for web
developers, having some general awareness of what the suite of Internet
protocols does for us can at times be helpful.

2.1.1 A Layered Architecture

The TCP/IP Internet protocols were originally abstracted as a four-layer
stack.l-2 Later abstractions subdivide it further into five or seven layers.2
Since we are focused on the top layer anyhow, we will use the earliest and
simplest four-layer network model shown in Figure 2.1 .

Pry g
1l “Z.
th ¢ 9 p,
tra ||1: fr
rlg at (]
Pay O 1
B nla!";' Fg:f 2
! <%
Ory M. e
L <
by dng s
ahy; Wiy, 3
bllsh&g Ithm-lzwﬁ in UQP
Ly hnE E"‘H; Td"' """':"'f
Cig 2
n <y
§ i
. n
O n'hh Qﬁging Iﬂﬁu
I <5 <z
trar.slmsy o
IQ,'.I i ¢
l'aw h“a ’lP'

Figure 2.1 Four-layer network
model

Figure 2.1 Full Alternative Text

Layers communicate information up or down one level, but needn't worry
about layers far above or below. Lower layers handle the more fundamental
aspects of transmitting signals through networks, allowing the higher layers
to implement bigger ideas like how a client and server interact.

2.1.2 Link Layer

The link layer is the lowest layer, responsible for both the physical
transmission of data across media (both wired and wireless) and establishing
logical links. It handles issues like packet creation, transmission, reception,
error detection, collisions, line sharing, and more. The one term here that is
sometimes used in the Internet context is that of MAC (media access control)
addresses. These are unique 48- or 64-bit identifiers assigned to network
hardware and which are used at the link layer. We will not focus on this layer
any further, although you can learn more in a computer networking course or
text.

2.1.3 Internet Layer

The Internet layer (sometimes also called the IP Layer) routes packets
between communication partners across networks. The Internet layer
provides “best effort” communication. It sends out a message to its
destination, but expects no reply, and provides no guarantee the message will
arrive intact, or at all.

The Internet uses the Internet Protocol (IP) addresses, which are numeric
codes that uniquely identify destinations on the Internet. As can be seen in
Figure 2.2 , every device connected to the Internet has such an IP address.

i?&h‘iﬂdress 142,108.149.36

i Sl

op |
aipoatig |
ndcws TP Configuration

[Etharnet adapter Local Area Connecticn:
conmection-specific ong Suffin .
Pl AOOFGEE, « o w x s v 0w e

IP: 192.168.123.254
FIP: 10.239.28.131

IP Address

IP Address 10.239.28.131

BaootP Static

~1P: 142.181.80.3

Figure 2.2 IP addresses and the
Internet

Figure 2.2 Full Alternative Text

The details of the IP addresses can be important to a web developer. There
are occasions when one needs to track, record, and compare the IP address of
a given web request. Online polls, for instance, need to consider IP addresses
to ensure a given address does not vote more than once.

There are two types of IP addresses: IPv4 and IPv6. IPv4 addresses are the IP
addresses from the original TCP/IP protocol. In IPv4, 12 numbers are used
(implemented as four 8-bit integers), written with a dot between each integer

(Figure 2.3). Since an unsigned 8-bit integer's maximum value is 255, four
integers together can encode approximately 4.2 billion unique IP addresses.

4-8 bit components
sy (32 bits)

NN

192.168 . 123 . 254

232 addresses

IPV6 8-16 bit components
2'%8 sddresses (128 bits)

e AN

3fae:7al10:4545:9:291 :e8ff:fe21:37ca

Figure 2.3 IPv4 and IPv6
comparison

Figure 2.3 Full Alternative Text

Your IP address will generally be assigned to you by your Internet service
provider (ISP). In organizations, large and small, purchasing extra IP
addresses from the ISP is not cost effective. In a local network, computers
can share a single external IP address between them. IP addresses in the
range of 192.168.0.0 to 192.168.255, for example, are reserved for exactly
this local area network use. Your connection therefore might have an internal
IP of 192.168.0.15 known only to the internal network, and another public IP
address that is your address to the world.

«4 Hands-on Exercises I.ab 2
Exercise

Your IP address

The decision to make IP addresses 32 bits limited the number of hosts to 4.2
billion. As more and more devices connected to the Internet the supply of
addresses dwindled, especially in some local areas that had already
distributed their allotment.

To future-proof the Internet against the 4.2 billion limit, a new version of the
IP protocol was created, IPv6. This newer version uses eight 16-bit integers
for 21?8 unique addresses, over a billion billion times the number in IPv4.
These 16-bit integers are normally written in hexadecimal, due to their longer
length. This new addressing system is currently being rolled out with a
number of transition mechanisms, making the rollout seamless to most users
and even developers.

Figure 2.3 compares the IPv4 and IPv6 address schemes.

mBackground

You may be wondering who gives an ISP its IP addresses. The answer is
ultimately the Internet Assigned Numbers Authority (IANA). This group is
actually a department of ICANN, the Internet Corporation for Assigned
Names and Numbers, which is an internationally organized nonprofit
organization responsible for the global coordination of IP addresses, domains,
and Internet protocols. IANA allocates IP addresses from pools of
unallocated addresses to Regional Internet Registries, such as AfriNIC (for
Africa) or ARIN (for North America).

2.1.4 Transport Layer

The transport layer ensures transmissions arrive in order and without error.
This is accomplished through a few mechanisms. First, the data is broken into

packets formatted according to the Transmission Control Protocol (TCP).
The data in these packets can vary in size from 0 to 64 K, though in practice

typical packet data size is around 0.5 to 1 K. Each data packet has a header
that includes a sequence number, so the receiver can put the original message
back in order, no matter when they arrive. Secondly, each packet
acknowledges its successful arrival back to the sender so in the event of a lost
packet, the transmitter will realize a packet has been lost since no ACK
arrived for that packet. That packet is retransmitted, and although out of
order, is reordered at the destination, as shown in Figure 2.4 . This means you
have a guarantee that messages sent will arrive and will be in order. As a
consequence, web developers don't have to worry about pages not getting to
the users.

%<« Hands-on Exercises I.ab 2
Exercise

Tracing a Packet

o Message broken
into packets with a
sequence number.

-

Thou map of woe,

that thus dost

Thou map of woe, that
thus dost talk in signs!

L)

s

talk in signs!

_—1 1 (Thou map of woe, 0 For each TCP packet

e sent, an ACK
i Ackl 1 (acknowledgement)
.- must be received back.

e

2 |that thus dost
talk in signs!
ACK| 3
2 | that thus dost Thou map of woe, that
\\ thus dost talk in signs!

Evemually sender will] ACK| 2 —>
resend any packets that Message reassembled from
didn't get an ACK back. packets and ordered according

to their sequence numbers.

Figure 2.4 TCP packets

Figure 2.4 Full Alternative Text

LeSPro Tip

Sometimes we do not want guaranteed transmission of packets. Consider a
live multicast of a soccer game, for example. Millions of subscribers may be
streaming the game, and the broadcaster can't afford to track and retransmit

every lost packet. A small loss of data in the feed is acceptable, and the
customers will still see the game. An Internet protocol called User Datagram
Protocol (UDP) is used in these scenarios in lieu of TCP. Other examples of
UDP services include Voice Over IP, many online games, and Domain Name
System (DNS).

2.1.5 Application Layer

With the application layer, we are at the level of protocols familiar to most
web developers. Application layer protocols implement process-to-process
communication and are at a higher level of abstraction in comparison to the
low-level packet and IP address protocols in the layers below it.

There are many application layer protocols. A few that are useful to web
developers include the following:

e HTTP. The Hypertext Transfer Protocol is used for web communication.

e SSH. The Secure Shell Protocol allows remote command-line
connections to servers.

e FTP. The File Transfer Protocol is used for transferring files between
computers.

e POP/IMAP/SMTP. Email-related protocols for transferring and storing
email.

e DNS. The Domain Name System protocol used for resolving domain
names to IP addresses.

“sNote

We will discuss the HTTP and the DNS protocols later in this chapter. SSH
and the email protocols will be covered later in the book in the chapter on
security.

mTools Insight

Although the web uses HTTP to transfer files between the browser and
server, managing those files on a server is normally facilitated using the FTP,
SFETP (secure FTP), or SSH protocols. Web developers and designers must
all learn to transfer files they have worked on locally to a web server.

Many software tools including open source programs like FileZilla,
command line tools like ftp and scp, as well as modules built into Integrated
Development Environments (IDE) like Eclipse facilitate transferring files
between a local computer and a remote server. Figure 2.5 shows a screen
capture from FileZilla, a popular and easy-to-use FTP client, where local files
can be transferred between client (left) and server (right) by dragging and
dropping files between the windows.

0

on the status of requests

i] [
: 7

B

Hail: ity fumwebievop Userime:

FEaE mE g il ey b
Sns Lstng oreoury hemeirhey

Sun Direchory llig of “homehodr” Setotiile
Subc Discerraciid rom ianvel

FTP programs will usually display feedback

Filinamp &
Local ste: {Applcations/XAMPR/hidocs/dashbcard/ H -

B W0 ke Minig
¥ § e
B B
B igiebn
T
¥ B s
¥ Lagaifoms
§ semng
¥ PRkl
B

B sphad

B g
B wtauw
B g
BB et G
F B wiskillaog
k| imppfle
b loskiagn
BB Minedate
F B Ubwy
B
B MANP
B Mabwork
B Ot he
¥ Spaem
¥ 3 Lenry
B Ua infermation

o 8 8 e Manager
SR Advanced Tranile Selisgs Charesl
' s T My S
First, you must specify the " "™ L pr——
connection information ok | - Twiboeed)
. T e TLS if vk
for the remote machine e S B
Legen Type: | Normal B
\ier: T . ;
Comments:
Maw Site Mow Eolder
ot irhoargiurwebda com - Flalila
I & 4) Mew Bogmarh Renats
i Dokt Dupicate
Pusnrd: | sosessiseisss | Port [Bulcieomeet J
oK Cancil
UL Remiote site: fhame|rhaar ﬂ
B docs Dv |§-
B Dig| B emacsd 1
1 D 5 L
W e i
¥ images Dir | | ash hissory Thw
T B baih dsgout ' hew
B ol Bi i, profie -
1] [} g
wal] BmacE
B b Dii AOME0A0Ea
g i Dii | | Dol 14 30w g2
BN Dii bbb psy
§ sylashpste Dir faviconico
Uit o figanifiong
1 Db ¥ indenhemi
u T o
§ W D myttene gl
& A0 i 44K W) | norigon-galieny i gz T i :
& b wrha]| | mecenste Filezilla lets you transfer files
favigan ko 1200 ke || | guckeacra 0N g [. .
8 e 70, ! simply by dragging and dropping
® howio_platform_inks hém ITHE HT ! tremelorest-4 383008 - sallerd-respon ﬁles hetween |0[a| and remote
o howin_shared |inis mi E3K3 HT .
o dochn B machines
phoiliphp b ph

Flwing 11, Tolal wiov: 70 KR

9 e g 3 rwsioran. Tofal wam: 94 MO

Bl T Diracion Biwida e En Moty
i ¥t irhoarh.mwebie

[Acgiegtions/AMPR), 3> MomaiThosrinden himi
Qusised hles Faibed tramters (1) | Swtcesabul tranaters (1)

Files on local machine

Tes

TAKD Normal OO0 1LET

quomm aid

Files on remote machine

Figure 2.5 A screenshot of
FileZilla connecting to a remote

server

Figure 2.5 Full Alternative Text

2.2 Domain Name System

In the previous section, you learned about IP addresses and how they are an
essential feature of how the Internet works. As elegant as IP addresses may
be, human beings do not enjoy having to recall long strings of numbers. One
can imagine how unpleasant the Internet would be if you had to remember IP
addresses instead of names. Rather than google.com, you'd have to type
216.58.216.78. If you had to type in 173.252.90.36 to visit Facebook, it is
quite likely that social networking would be a less popular pastime.

%« Hands-on Exercises I.ab 2
Exercise

Name Servers

Even as far back as the days of ARPANET, researchers assigned domain
names to IP addresses. In those early days, the number of Internet hosts was
small, so a list of a few hundred domains and associated IP addresses could
be downloaded as needed from the Stanford Research Institute (now SRI
International) as a hosts file (see Pro Tip). Those key-value pairs of domain
names and IP addresses allowed people to use a domain name rather than an

IP address.?

As the number of computers on the Internet grew, this hosts file had to be
replaced with a better, more scalable, and distributed system. This system is
called the Domain Name System (DINS) and is shown in its most simplified
form in Figure 2.6 .

http://google.com

| need to go to
www . funwebdev . com

/

d o What's the
\} IP address of

www . fTunwebdev.com?

9 | want the 0 Here it is,

é& default page it's: 66.147.244.79
at 66.147.244.79

;"’

P

e

Web server:
66.147.244.79

Figure 2.6 DNS overview

Figure 2.6 Full Alternative Text

DNS is one of the core systems that make an easy-to-use Internet possible
(DNS is used for email as well). The DNS system has another benefit besides
ease of use. By separating the domain name of a server from its IP location, a
site can move to a different location without changing its name. This means
that sites and email systems can move to larger and more powerful facilities
without disrupting service.

Since the entire request-response cycle can take less than a second, it is easy
to forget that DNS requests are happening in all your web and email
applications. Awareness and understanding of the DNS system is essential for

success in developing, securing, deploying, troubleshooting, and maintaining
web systems.

e23Pro Tip

A remnant of those earliest days still exists on most modern computers,
namely the hosts file. Inside that file (in Unix systems typically at /etc/hosts)
you will see domain name mappings in the following format:

127.0.0.1 Localhost SomelLocalDomainName.com

This mechanism will be used in this book to help us develop websites on our
own computers with real domain names in the address bar.

Unfortunately, this same hosts file mechanism could also allow a malicious
user to reroute traffic destined for a particular domain. If a malicious user ran
a server at 123.56.789.1 they could modify a user's hosts to make
facebook.com point to their malicious server. The end client would then type
facebook.com into his browser and instead of routing that traffic to the
legitimate facebook.com servers, it would be sent to the malicious site, where
the programmer could phish, or steal data.

123.456.678.1 facebook.com

For this reason, many system administrators and most modern operating
systems do not allow access to this file without an administrator password.

2.2.1 Name Levels

A domain name can be broken down into several parts. They represent a
hierarchy, with the rightmost parts being closest to the root at the “top” of the
Internet naming hierarchy. All domain names have at least a top-level domain
(T'LD) name and a second-level domain (SLD) name. Most websites also
maintain a third-level WWW subdomain and perhaps others. Figure 2.7
illustrates a domain with four levels.

http://facebook.com
http://facebook.com
http://facebook.com

Third-level domain —l Top-level domain (TLD)

i

server1.www. funwebdev.com

T f

Fourth-level domain Second-level domain (S5LD)

Most general Top-level domain (TLD) com
Second-level domain (5LD) funwebdev
Third-level domain www
Y
Most specific Fourth-level domain serveri

Figure 2.7 Domain levels

Figure 2.7 Full Alternative Text

The rightmost portion of the domain name (to the right of the rightmost
period) is called the top-level domain. For the top level of a domain, we are
limited to two broad categories, plus a third reserved for other use. They are:

e Generic top-level domain (gTL.D)

o Unrestricted. TLDs include .com, .net, .org, and .info.

o Sponsored. TLDs including .gov, .mil, .edu, and others. These
domains can have requirements for ownership and thus new
second-level domains must have permission from the sponsor
before acquiring a new address.

o New. From January to May of 2012, companies and individuals
could submit applications for new TLDs. TLD application results
were announced in June 2012, and include a wide range of both
contested and single applicant domains. These include corporate
ones like .apple, .google, and .macdonalds, and contested ones like

buy, .news, and .music.2

e Country code top-level domain (ccTLD)

o TLDs include .us, .ca, .uk, and .au. At the time of writing, there
were 252 codes registered.® These codes are under the control of
the countries which they represent, which is why each is
administered differently. In the United Kingdom, for example,
commercial entities and businesses must register subdomains to
co.uk rather than second-level domains directly. In Canada, .ca
domains can be obtained by any person, company, or organization
living or doing business in Canada. Other countries have peculiar
extensions with commercial viability (such as .tv for Tuvalu) and
have begun allowing unrestricted use to generate revenue.

o Since some nations use nonwestern characters in their native
languages, the concept of the internationalized top-level domain
name (IDIN) has also been tested with great success in recent years.
Some IDNs include Greek, Japanese, and Arabic domains (among
others) which have test domains at http://mapaderypo.dopn, http://
% 7 .7 A b, and http://_Jkis). Jis, respectively.

® arpa

o The domain .arpa was the first assigned top-level domain. It is still
assigned and used for reverse DNS lookups (i.e., finding the
domain name of an IP address).

In a domain like funwebdev.com, the “.com” is the top-level domain and
funwebdev is called the second-level domain. Normally, it is the second-level
domains that one registers.

There are few restrictions on second-level domains aside from those imposed

http://funwebdev.com

by the registrar (defined in the next section). Except for internationalized
domain names, we are restricted to the characters A-Z, 0-9, and the “-”
character. Since domain names are case-insensitive, a-z can also be used
interchangeably.

The owner of a second-level domain can elect to have subdomains if they so
choose, in which case those subdomains are prepended to the base hostname.
For example, we can create exam-answers.funwebdev.com as a domain
name, where exam-answers is the subdomain (don't bother checking ... it
doesn't exist).

L“¥Note

We could go further creating sub-subdomains if we wanted to. Each further
level of subdomain is prepended to the front of the hostname. This allows
third level, fourth, and so on. This can be used to identify individual
computers on a network all within a domain.

2.2.2 Name Registration

As we have seen, domain names provide a human-friendly way to identify
computers on the Internet. How then are domain names assigned? Special
organizations or companies called domain name registrars manage the
registration of domain names. These domain name registrars are given
permission to do so by the appropriate generic top-level domain (gTLD)
registry and/or a country code top-level domain (ccTLD) registry.

In the 1990s, a single company (Network Solutions Inc.) handled the com,
net, and org registries. By 1999, the name registration system changed to a
market system in which multiple companies could compete in the domain
name registration business. A single organization—the nonprofit Internet
Corporation for Assigned Names and Numbers (ICANN)—still oversees the
management of top-level domains, accredits registrars, and coordinates other
aspects of DNS. At the time of writing this chapter, there were almost 1000

different ICANN-accredited registrars worldwide. Figure 2.8 illustrates the
process involved in registering a domain name.

© oediteona [yantthe doni TLD name servers I g @ Regityil
toplevel | funwebdev.com push DAS
domain (.com) / information
?:fﬁid-level 0 Choose:adomai regitr ‘ e
donan ' or a reseller (a company such TLDname
(funwebdev) Y as a web host that works / e
with a registrar).

TLD (.com)
registry

o Registrars will check if
domain is available by
asking Registry for the TLD.

0 Enjoy the new domain ... |
You now have purchased
the rights to use it

o Complete the registration procedures
which includes WHOIS contact information
(includes DNS information) and payment.

Figure 2.8 Domain name

registration process

Figure 2.8 Full Alternative Text

e23Pro Tip

Increasingly, the practice of buying domain names and attempting to resell
has gained notoriety. Although there are legitimate reasons why multiple
people or companies could want the same domain name, many people
attempt to make money by simply buying names that others might want, and
sitting on them until someone buys the domain away to a actually use (hence
the term domain squatting).

In practice, this means that when registering a domain name, you should
consider other versions and variations of the name that might be worth
registering at the same time. Owning a suite of domain names can help to
prevent confusion, and mitigate the threat of squatters selling the domain
back to you at an inflated price. It also means users should pay attention to
how they enter domain names, since misspellings are a common way for
malicious agents to exploit the WWW.

In Chapter 22 you will learn more about the details of domain registration.

2.2.3 Address Resolution

While domain names are certainly an easier way for users to reference a
website, eventually your browser needs to know the IP address of the website
in order to request any resources from it. DNS provides a mechanism for
software to discover this numeric IP address. This process is referred to as
address resolution.

As shown back in Figure 2.6 , when you request a domain name, a computer
called a domain name server will return the IP address for that domain. With

that IP address, the browser can then make a request for a resource from the
web server for that domain.

While Figure 2.6 provides a clear overview of the address resolution process,
it is quite simplified. What actually happens during address resolution is
more complicated, as can be seen in Figure 2.9 .

0 | want to visit www. funiebdev . com

If IP for this site s not in browser's cache, Root name server

it delegates task to operating system's o If the primary DNS returns IP of name
DNS Resolver, i server doesn't have server for requested

If not in its DNS cache, the requested domain [) 1D (nthis case

resolver makes request . . he. | ?

for Paddresstolsps O ARt g the com name server,
sends out the request

to the roat name

server, o /

i .,,.DNS Server.

Zl:ﬂft‘fﬁ Return IP address of
wiw . funwebdev, com

S . funwebdev . con N\
b Bmwser requests \ Q k
N page 2

o Request IP of name server
for_funwehtlev.com

@ Returns“‘x\. hecks (.
requested iche
page 2

return IP adldress
of DNS server
for funwebdev. com

o Request for IP
address for
www, funwebdev . com

funwebdev . com

Figure 2.9 Domain name
address resolution process

Figure 2.9 Full Alternative Text

DNS is sometimes referred to as a distributed database system of name
servers. Each server in this system can answer, or look for the answer to
questions about domains, caching results along the way. From a client's
perspective, this is like a phonebook, mapping a unique name to a number
(sometimes multiple numbers).

Figure 2.9 is one of the more complicated ones in this text, so let's examine
the address resolution process in more detail.

1. The resolution process starts at the user's computer. When the URL
www.funwebdev.com is requested (perhaps by clicking a link or typing
it in), the browser will begin by seeing if it already has the IP address for

the domain in its cache. If it does, it can jump to step ® in the diagram.

2. If the browser doesn't know the IP address for the requested site, it will
delegate the task to the DNS resolver, a software agent that is part of the
operating system. The DNS resolver also keeps a cache of frequently
requested domains; if the requested domain is in its cache, then the

process jumps to step &,

3. Otherwise, it must ask for outside help, which in this case is a nearby
DNS server, a special server that processes DNS requests. This might be
a computer at your Internet service provider (ISP) or at your university
or corporate IT department. The address of this local DNS server is
usually stored in the network settings of your computer's operating
system, as can be seen in Figure 2.2 . This server keeps a more
substantial cache of domain name/IP address pairs. If the requested

domain is in its cache, then the process jumps to step D

4. 1If the local DNS server doesn't have the IP address for the domain in its
cache, then it must ask other DNS servers for the answer. Thankfully,
the domain system has a great deal of redundancy built into it. This
means that in general there are many servers that have the answers for
any given DNS request. This redundancy exists not only at the local
level (for instance, in Figure 2.9 , the ISP has a primary DNS server and

http://www.funwebdev.com

an alternative one as well) but at the global level as well.

. If the local DNS server cannot find the answer to the request from an
alternate DNS server, then it must get it from the appropriate top-level
domain (TLD) name server. For funwebdev.com this is .com. Our local
DNS server might already have a list of the addresses of the appropriate
TLD name servers in its cache. In such a case, the process can jump to

step &,

. If the local DNS server does not already know the address of the
requested TLD server (for instance, when the local DNS server is first
starting up it won't have this information), then it must ask a root name
server for that information. The DNS root name servers store the
addresses of TLD name servers. IANA (Internet Assigned Numbers
Authority) authorizes 13 root servers, so all root requests will go to one
of these 13 roots. In practice, these 13 machines are mirrored and
distributed around the world (see http://www.root-servers.org/ for an
interactive illustration of the current root servers); at the time of writing,
there are over 500 root server machines. With the creation of new
commercial top-level domains in 2012, approximately 2000 or so new
TLDs has come online, creating a heavier load on these root name
Servers.

. After receiving the address of the TLD name server for the requested
domain, the local DNS server can now ask the TLD name server for the
address of the requested domain. As part of the domain registration
process (see Figure 2.8), the address of the domain's DNS servers are
sent to the TLD name servers, so this is the information that is returned

to the local DNS server in step 0.

. The user's local DNS server can now ask the DNS server (also called a
second-level name server) for the requested domain
(www.funwebdev.com); it should receive the correct IP address of the
web server for that domain. This address will be stored in its own cache
so that future requests for this domain will be speedier. That IP address
can finally be returned to the DNS resolver in the requesting computer,

as shown in step D

http://funwebdev.com
http://www.root-servers.org/
http://www.funwebdev.com

9. The browser will eventually receive the correct IP address for the

requested domain, as shown in step @. Note: If the local DNS server
were unable to find the IP address, it would return a failed response,
which in turn would cause the browser to display an error message.

10. Now that it knows the desired IP address, the browser can finally send
out the request to the web server, which should result in the web server

responding with the requested resource (step 5-.3?3).

This process may seem overly complicated, but in practice, it happens very
quickly because DNS servers cache results. Once the server resolves
funwebdev.com, subsequent requests for resources on funwebdev.com will
be faster, since we can use the locally stored answer for the IP address rather
than have to start over again at the root servers.

To facilitate system-wide caching, all DNS records contain a time to live
(TTL) field, recommending how long to cache the result before requerying
the name server. Although this mechanism improves the efficiency and
response time of the DNS system, it has a consequence of delaying
propagation of changes throughout all servers. This is why administrators,
after updating a DNS entry, must wait for propagation to all client ISP
caches.

For more hands-on practice with the Domain Names System, please refer to
Chapter 22 on Deployment.

L“¥Note

Every web developer should understand the practice of pointing the name
servers to the web server hosting the site. Quite often, domain registrars can
convince customers into purchasing hosting together with their domain. Since
most users are unaware of the distinction, they do not realize that the
company from which you buy web space does not need to be the same place
you register the domain. Those name servers can then be updated at the
registrar to point to any name servers you use. Within 48 hours, the IP-to-

http://funwebdev.com
http://funwebdev.com

domain name mapping should have propagated throughout the DNS system
so that anyone typing the newly registered domain gets directed to your web
server.

2.3 Uniform Resource Locators

In order to allow clients to request particular resources (files) from the server,
a naming mechanism is required so that the client knows how to ask the
server for that file. For the web that naming mechanism is the Uniform
Resource Locator (URL). As illustrated in Figure 2.10 , it consists of two
required components: the protocol used to connect, and the domain (or IP
address) to connect to. Optional components of the URL are the path (which
identifies a file or directory to access on that server), the port to connect to, a
query string, and a fragment identifier.

http://www. funwebdev.com/index.php?page=17#article
I | I I I
Protocol Domain Path Query String Fragment

Figure 2.10 URL components

Figure 2.10 Full Alternative Text

2.3.1 Protocol

The first part of the URL is the protocol that we are using. Recall that in
Section 2.1, we listed several application layer protocols on the TCP/IP stack.
Many of those protocols can appear in a URL, and define what application
protocols to use. Requesting ftp://example.com/abc.txt sends out an FTP
request on port 21, while http://example.com/abc.txt would transmit an HTTP
request on port 80.

2.3.2 Domain

The domain identifies the server from which we are requesting resources.

Since the DNS system is case insensitive, this part of the URL is case
insensitive. Alternatively, an IP address can be used for the domain.

2.3.3 Port

The optional port attribute allows us to specify connections to ports other
than the defaults defined by the IANA authority. A port is a type of software
connection point used by the underlying TCP/IP protocol and the connecting
computer. If the IP address is analogous to a building address, the port
number is analogous to the door number for the building.

Although the port attribute is not commonly used in production sites, it can
be used to route requests to a test server, to perform a stress test, or even to
circumvent Internet filters. If no port is specified, the protocol component of
a URL determines which port to use.

The syntax for the port is to add a colon after the domain, then specify an
integer port number. Thus, for instance, to connect to our server on port 888,
we would specify the URL as http://funwebdev.com:888/.

2.3.4 Path

The path is a familiar concept to anyone who has ever used a computer file
system. The root of a web server corresponds to a folder somewhere on that
server. On many Linux servers that path is /var/www/html/ or something
similar (for Windows IIS machines it is often /inetpub/wwwroot/).

The path is optional. However, when requesting a folder or the top-level page
of a domain, the web server will decide which file to send you. On Apache
servers, it is generally index.html or index.php. Windows servers sometimes
use Default.html or Default.aspx. The default names can always be
configured and changed.

L“¥Note

The path on a Windows server is case insensitive. However, on non-
Windows servers (which is the majority of servers), the path is case sensitive.
This is often a real gotcha for students when referencing files in HTML and
CSS. If the student is using a Windows computer for her development work,
the underlying Windows operating system doesn't care about the case of
folders and file names. But when the website is uploaded to a web server that
is not using Windows, then case matters. For this reason, it is a common
convention amongst web developers to stick with lower case for all folders
and files.

2.3.5 Query String

Query strings will be covered in depth when we learn more about HTML
forms and server-side programming. They are a critical way of passing
information, such as user form input from the client to the server. In URLs,
they are encoded as key-value pairs delimited by & symbols and preceded by
the ? symbol. The components for a query string encoding a username and
password are illustrated in Figure 2.11 .

Keys T
L J

7username=johné&password=abcdefg

T e T

-Delimiters-

Figure 2.11 Query string
components

Figure 2.11 Full Alternative Text

2.3.6 Fragment

The last part of a URL is the optional fragment. This is used as a way of
requesting a portion of a page. Browsers will see the fragment in the URL,
seek out the fragment tag anchor in the HTML, and scroll the website down
to it. Many early websites would have one page with links to content within
that page using fragments and “back to top™ links in each section.

2.4 Hypertext Transfer Protocol

There are several layers of protocols in the TCP/IP model, each one building
on the lower ones until we reach the highest level, the application layer,
which allows for many different types of services, like Secure Shell (SSH),
File Transfer Protocol (FTP), and the World Wide Web's protocol, that is, the
Hypertext Transfer Protocol (HTTP).

While the details of many of the application layer protocols are beyond the
scope of this text, HTTP is an essential part of the web and hence successful
developers require a deep understanding of it to build atop it successfully. We
will come back to the HTTP protocol at various times in this book; each time
we will focus on a different aspect of it. However, here we will just try to
provide an overview of its main points.

%« Hands-on Exercises I.ab 2
Exercise

Seeing HTTP Headers

The HTTP establishes a TCP connection on port 80 (by default). The server
waits for the request, and then responds with a response code, headers, and an
optional message (which can include files) as shown in Figure 2.12 .

GET /index.html HTTP/1.1

Host: example.com

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOWG4;
rv:15.0) Gecko/20100101 Firefox/15.0.1

Request
-y Accept: text/html,application/xhtml+xm
8 \ Accept- Language. en-us,en;q=0.5
Mg Accept-Encoding: gzip, deflate
e
N Connection: keep-alive

™ Cache-Control: max-age=0

Response

HTTP/1.1 200 OK
Date: Mon, 23 Oct 2017 02:43:49 GMT
Server: Apache

Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 4538

Connection: close

Content-Type: text/html; charset=UTF-8

<html>
<head> ...

Web server

Figure 2.12 HT'TP illustrated

Figure 2.12 Full Alternative Text

2.4.1 Headers

Headers are sent in the request from the client and received in the response
from the server. These encode the parameters for the HTTP transaction,
meaning they define what kind of response the server will send. Headers are

one of the most powerful aspects of HTTP and unfortunately, few developers
spend any time learning about them. Although there are dozens of headers,’
we will cover a few of the essential ones to give you a sense of what type of
information is sent with each and every request.

Request headers include data about the client machine (as in your personal
computer). Web developers can use this information for analytic reasons and
for site customization. Some of these include the following:

e Host. The host header was introduced in HTTP 1.1, and it allows
multiple websites to be hosted from the same IP address. Since requests
for different domains can arrive at the same IP, the host header tells the
server which domain at this IP address we are interested in.

e User-Agent. The User-Agent string is the most referenced header in
modern web development. It tells us what kind of operating system and
browser the user is running. Figure 2.13 shows a sample string and the
components encoded within. These strings can be used to switch
between different style sheets and to record statistical data about the
site's visitors.

Additional details (32/ Gecko Browser
Browser 0s 64 bit, build versions) Build Date Firefox version

Mozilla/6.0 (Windows NT 6.2; WOW64; rv:16.0.1) Gecko/20121011 Firefox/16.0.1

Figure 2.13 User-Agent
components

Figure 2.13 Full Alternative Text

e Accept. The Accept header tells the server what kind of media types the
client can receive in the response. The server must adhere to these
constraints and not transmit data types that are not acceptable to the
client. A text browser, for example, may not accept attachment binaries,
whereas a graphical browser can do so.

e Accept-Encoding. The Accept-Encoding headers specify what types of
modifications can be done to the data before transmission. This is where
a browser can specify that it can unzip or “deflate” files compressed
with certain algorithms. Compressed transmission reduces bandwidth
usage, but is only useful if the client can actually deflate and see the
content.

e Connection. This header specifies whether the server should keep the
connection open, or close it after response. Although the server can
abide by the request, a response Connection header can terminate a
session, even if the client requested it stay open.

e (Cache-Control. The cache header allows the client to control browser-
caching mechanisms. This header can specify, for example, to only
download the data if it is newer than a certain age, never redownload if
cached, or always redownload. Proper use of the Cache-Control header
can greatly reduce bandwidth.

Response headers have information about the server answering the request
and the data being sent. Some of these include the following:

e Server. The server header tells the client about the server. It can include
what type of operating system the server is running as well as the web
server software that it is using.

L“¥Note

The Server header can provide information to hackers about your
infrastructure. If, for example, you are running a vulnerable version of a
plugin, and your Server header declares that information to any client that
asks, you could be scanned, and subsequently attacked based on that header
alone. For this reason, many administrators limit this field to as little info as
possible.

e Last-Modified. Last-Modified contains information about when the
requested resource last changed. A static file that does not change will

always transmit the same last modified timestamp associated with the
file. This allows cache mechanisms (like the Cache-Control request
header) to decide whether to download a fresh copy of the file or use a
locally cached copy.

e Content-Length. Content-Length specifies how large the response body
(message) will be. The requesting browser can then allocate an
appropriate amount of memory to receive the data. On dynamic websites
where the Last -Modified header changes with each request, this field
can also be used to determine the “freshness” of a cached copy.

e Content-Type. To accompany the request header Accept, the response
header content -Type tells the browser what type of data is attached in
the body of the message. Some media-type values are text/html,
image/jpeg, image/png, application/xml, and others. Since the body
data could be binary, specifying what type of file is attached is essential.

e Content-Encoding. Even though a client may be able to gzip decompress
files and specified so in the Accept-Encoding header, the server may or
may not choose to encode the file. In any case, the server must specify
to the client how the content was encoded so that it can be decompressed
if need be.

“sNote

Although compressing pages before transmission reduces bandwidth, it
requires CPU cycles and memory to do so. On busy servers, sometimes it can
be more efficient to transmit dynamic content uncompressed, saving those
CPU cycles to respond to requests.

2.4.2 Request Methods

The HTTP protocol defines several different types of requests, each with a
different intent and characteristics. The most common requests are the GET

and POST request, along with the HEAD request. Other requests, such as PUT,
DELETE, CONNECT, TRACE, and OPTIONS are used more infrequently, and are not
covered here.

The most common type of HTTP request is the GET request. In this request,
one is asking for a resource located at a specified URL to be retrieved.
Whenever you click on a link, type in a URL in your browser, or click on a
bookmark, you are usually making a GET request.

Data can also be transmitted through a GET request, through the URL as a
query string, something you saw in back in Section 2.3.5, and will see again

in Chapter 5.

The other common request method is the POST request. This method is
normally used to transmit data to the server using an HTML form (though as
we will learn in Chapter 5, a data entry form could use the GET method
instead). In a POST request, data is transmitted through the header of the
request, and as such is not subject to length limitations like with GET.
Additionally, since the data is not transmitted in the URL, it is seen to be a
safer way of transmitting data (although in practice all post data is transmitted
unencrypted, and can be read nearly as easily as GET data). Figure 2.14
illustrates a GET and a POST request in action.

Browser <form method="POST" action="FormProcess.php">

€y

i

-
Nationality: [Spai v

: POST /FormProcess.php http/1.1
Sub"‘i‘i! ﬁ

Web server

Hyperlink
Browser i

€

Figure 2.14 GET versus POST
requests

Figure 2.14 Full Alternative Text

A HEAD request is similar to a GET except that the response includes only the
header information, and not the body that would be retrieved in a full GET.
Search engines, for example, use this request to determine if a page needs to
be reindexed without making unneeded requests for the body of the resource,
saving bandwidth.

2.4.3 Response Codes

Response codes are integer values returned by the server as part of the
response header. These codes describe the state of the request, including
whether it was successful, had errors, requires permission, and more. For a
complete listing, please refer to the HTTP specification. Some commonly
encountered codes are listed in Table 2.1 to provide a taste of what kind of
response codes exist.

Table 2.1 HTTP Response
Codes

Code Description
208: OK The 200 response code means that the request was
successful.
Tells the client that the requested resource has
permanently moved. Codes like this allow search
301: Moved

Permanently €ngines to update their databases to reflect the new
location of the resource. Normally the new location
for that resource is returned in the response.

If the client requested a resource with appropriate
Cache-Control headers, the response might say
304: Not that the resource on the server is no newer than the
Modified one in the client cache. A response like this is just a
header, since we expect the client to use a cached
copy of the resource.

ig;gorary This code is similar to 301, except the redirection
redirect should be considered temporary.

If something about the headers or HTTP request in
400: Bad

Request general is not correctly adhering to HTTP protocol,
the 400 response code will inform the client.

Some web resources are protected and require the

401 user to provide credentials to access the resource. If
Unauthorized the client gets a 401 code, the request will have to
be resent, and the user will need to provide those

credentials.

404 codes are one of the only ones known to web
404: Not users. Many browsers will display an HTML page
found with the 404 code to them when the requested

resource was not found.

URLSs have a length limitation, which varies
414: Request depending on the server software in place. A 414
URI too long response code likely means too much data is likely
trying to be submitted via the URL.

500: This error provides almost no information to the

Internal client except to say the server has encountered an
server error error

The codes use the first digit to indicate the category of response. 2## codes
are for successful responses, 3## are for redirection-related responses, 4##
codes are client errors, while 5## codes are server errors.

“sNote

The previous pages have described HTTP/1.1, which was standardized in
1997. At the time of writing, HTTP/2 became a W3C Recommendation in
2015, and is slowly being adopted.

2.5 Web Browsers

The user experience for a website is unlike the user experience for traditional
desktop software. Users do not download software; they visit a URL, which
results in a web page being displayed. Although a typical web developer
might not build a browser, or develop a plugin, they must understand the
browser's crucial role in web development.

2.5.1 Fetching a web page

Although we as web users might be tempted to think of an entire page being
returned in a single HTTP response, this is not in fact what happens.

In reality, the experience of seeing a single web page is facilitated by the
client's browser, which requests the initial HTML page, then parses the
returned HTML to find all the resources referenced from within it, like
images, style sheets, and scripts. Only when all the files have been retrieved
is the page fully loaded for the user, as shown in Figure 2.15 . A single web
page can reference dozens of files and requires many HTTP requests and
responses.

0 GET /vacation.html

& o For each resource 9 vauatmn.htmlx"-«.\\
o referenced in the HTML,
€~ the browser makes
additional requests. - -o_pET Istyles.css

0 When all resources have
arrived, the browser can
lay out and display the
page to the user.

.

\Q GET [picture.jpg

.,
.,

picture.jpg 8

Figure 2.15 Browser parsing
HTML and making subsequent
requests

Figure 2.15 Full Alternative Text

The fact that a single web page requires multiple resources, possibly from
different domains, is the reality we must work with and be aware of. Modern
browsers provide the developer with tools that can help us understand the
HTTP traffic for a given page. Figure 2.16 shows a screen from the Firefox
plugin FireBug (an HTML/JavaScript debugger), which lists the resources

requested for a current page and the breakdown of the load times for each
component.

W Chapter || et - % |
d | (1) b Gy aerglen shagts . B¢ || et o0+ & D

[]]

Fundamentals of
Web Development

A tetbech oweting ol the oo lndamentaly
ol v deviligenent

Chapter 3: Introduction to CS5

SAMPLE FAGEY

Thi ehdgted prindied B Fuldtaniial inlrodhudtion to O35 [Castadng Sohie Shidti

B O imgncier) Commacly O Detegr }itpidiber (& Bodormangy (b Mgmery m B0 8 :0&x

»
B u WL 5 B B8 Fel beagei Mol Pk W Ooe & 7w, 11070 00 LD Fii UL B
iba Mgt iy e Coo T Treagmpd S bm e U U LM T
i GEr ¥ it chugpbn] M gy B rardeaim -y [- (1T] -l E
- | ot " chapte-H g B bamanbderoom et " - T [P
& ¥4 “n 'L‘rﬂ-_au Fargt- T g H ekl agm e A - ug Hatis
i X o B o adopron- gy o hmadbeder agm P kL - mia Hagie
Aok GET b Dolyiatintil STDI St Y3 H batiderdem i o - M3 g
- GEr B masonabed ¥ g B banbdey dim g ey - hi 1 | [Py
i B Gt [sdepmesiit a0y M drarbieitm e e - HE T] [
[-} -1 g ot hip Tunwrbdns com wepiny chaplenychi., [l wesilRsbostoom Tkdooamant Bl L Wy -
) 7 S T B wwsimbokcom B whad ST]
P | Wl sdgap B e g sl o Bt B nia A | T b
L o oot T8 pl Tl 1 S TOO R b B T, B wrm i ity B By [He L1 Taium
@ GET o e bt Tuotwrelbebre dn tampln/ hagterivhi [wormlploibbbl.com [] 5] HTS H=fim
o X6 -1 eulliipadip ST S Bev [ikl MG
o X G ool M barbdrigim B it i erthad MM
5 Gl epambendi B manbdrspm. Bty ekt o gk T -

Figure 2.16 Distribution of load
times

Figure 2.16 Full Alternative Text

2.5.2 Browser Rendering

The actual act of interpreting the entire HTML markup together with the

image and other assets into a grid of pixels for display within the browser
window is called rendering the webpage. This incredibly complex process is
implemented differently for each browser (Firefox, Chrome, Safari, Explorer,
and Opera), which is the cause for sites looking different in different
browsers.

2.5.3 Browser Caching

Once a webpage has been downloaded from the server, it's possible that the
user, a short time later, wants to see the same web page and refreshes the
browser or re-requests the URL. Although some content might have changed
(say a new blog post in the HTML), the majority of the referenced files are
likely to be unchanged (i.e., “fresh” as illustrated in Figure 2.17), so they
needn't be redownloaded. Browser caching has a significant impact in
reducing network traffic and will be come up again in greater detail
throughout this book.

. 0__(_?!11 fvacation.html

& HM
o For each requested
resource, determine vacation.html N\
if cached copy is fresh. \\
& \ — \
oy, A | Ifnotfresh, 1 \
L2 \] then make ' \

request for g
resource Q o
If it is fresh (i.e., recent E’l] S 190

and stored in the cache),
then use the cached copy

\
\

o Save resource in
browser cache

OChart.jpg

Figure 2.17 Illustration of
browser caching using cached
resources

Figure 2.17 Full Alternative Text

2.5.4 Browser features

Once upon a time browsers had very few features aside from the minimum
requirements of displaying web pages, and perhaps managing bookmarks.

Over the decades, users have come to expect more from browsers, so now
they include features, such as search engine integration, URL
autocompletion, cloud caching of user history/bookmarks, phishing website
detection, secure connection visualization, and much more.

These features enhance the browsing experience for users, and require that
web developers test their webpages before deployment to ensure none of
these features change the performance of their webpage.

2.5.5 Browser Extensions

A recent development in browser technology are extensions or add-ons,
which extends basic browser functionality. These extensions are written in
JavaScript and offer value to both developers and the general public, though
they complicate matters somewhat since they can occasionally interfere with
the presentation of web content.

For developers, extensions like Firebug and Y Slow offer valuable debugging
and analysis tools at no cost. These tools let us find bugs, or analyze the
speed of our site, integrating with the browser to provide access lots of
valuable information.

For the general public extensions can add functionality, such as auto fill
forms and passwords. Ad-blocking extensions, such as AdBlock have
improved the web experience by removing intrusive ads for users but have
reduced revenue and challenged current business models for webmasters
relying on ad displays.

2.6 Web Servers

A web server is, at a fundamental level, nothing more than a computer that
responds to HTTP requests. The first web server was hosted on Tim Berners-
Lee's desktop computer; later when you begin PHP development in Chapter
11, you may find yourself turning your own computer into a web server.

Real-world web servers are often more powerful than your own desktop
computer, and typically come with additional software and hardware features
that make them more reliable and replaceable. And as we saw in Section
1.3.6, real-world websites typically have many web servers configured
together in web farms.

Regardless of the physical characteristics of the server, one must choose an
application stack to run a website. This application stack will include an
operating system, web server software, a database, and a scripting language
to process dynamic requests.

Web practitioners often develop an affinity for a particular stack (often
without rationale). Throughout this textbook, we will rely on the LAMP
software stack, which refers to the Linux operating system, Apache web
server, MySQL database, and PHP scripting language. Since Apache and
MySQL also run on Windows and Mac operating systems, variations of the
LAMP stack can run on nearly any computer (which is great for students).
The Apple OSX MAMP software stack is nearly identical to LAMP, since
OSX is a Unix implementation, and includes all the tools available in Linux.
The WAMP software stack is another popular variation where Windows
operating system is used.

Despite the wide adoption of the LAMP stack, web developers need to be
aware of alternate software that could be used to support their websites.
Many corporations, for instance, make use of the Microsoft WISA software
stack, which refers to Windows operating system, IIS web server, SQL
Server database, and the ASP.NET server-side development technologies.
Another web development stack that is growing in popularity is the so-called

MEAN software stack, which refers to MongoDB database, Express.js
application framework, Angular.js client-side MVC framework, and node.js
as web server/execution environment. This MEAN stack can actually run on
different operating systems, so it is a different type of stack from LAMP or
WISA. You will learn more about the MEAN stack in Chapter 20.

2.6.1 Operating Systems

The choice of operating system will constrain what other software can be
installed and used on the server. The most common choice for a web server is
a Linux-based OS, although there is a large business-focused market that uses
Microsoft Windows IIS.

Linux is the preferred choice for technical reasons like the higher average
uptime, lower memory requirements, and the ability to remotely administer
the machine from the command line, if required. The free cost also makes it
an excellent tool for students and professionals alike looking to save on
licensing costs.

Organizations that have already adopted Microsoft solutions across the
organization are more likely to use a Windows server OS to host their
websites, since they will have in-house Windows administrators familiar with
the Microsoft suite of tools.

2.6.2 Web Server Software

If running Linux, the most popular web server software is Apache, which has
been ported to run on Windows, Linux, and Mac, making it platform
agnostic. Apache is also well suited to textbook discussion since all of its
configuration options can be set through text files (although graphical
interfaces exist).

The open-source nginx is another web server option whose user base is
beginning to approach that of Apache.® Nginx is especially fast for sites with
large numbers of simultaneous users requesting static files. For instance, a

busy site with dynamic content might make use of Apache to host its PHP
pages, but will use nginx on different servers to handle requests for images,
JavaScript, and CSS files.

I1S, the Windows server software, is preferred largely by those using
Windows in their enterprises already or who prefer the .NET development
framework. The most compelling reason to choose an IIS server is to get
access to other Microsoft tools and products, including ASP.NET and SQL
Server.

2.6.3 Database Software

The moment you decide your website will be dynamic, and not just static
HTML pages, you will likely need to make use of relational database
software capable of running SQL queries.

The open-source DBMS of choice is usually MySQL (though some prefer
PostgreSQL or SQLite), whereas the proprietary choice for web DBMS
includes Oracle, IBM DB2, and Microsoft SQL Server. All of these database
servers are capable of managing large amounts of data, maintaining integrity,
responding to many queries, creating indexes, creating triggers, and more.
The differences between these servers are real, but are not relevant to the
scope of projects we will be developing in this text.

With the growth in so-called Big Data, nonrelational (also referred to as No-
SQL) databases have garnered an increasing larger share of the web database
market. Perhaps the most popular of these is the open-source MongoDB,
which is part of the so-called MEAN web stack. Nonrelational databases are
particularly powerful when working with large, unstructured data that needs
to be spread across multiple servers.

In this book, you will be mainly using MySQL Server, though there will be
some exposure to MongoDB as well. If you decide to use a different
database, you may need to alter some of the queries.

http://ASP.NET

2.6.4 Scripting Software

Finally (or perhaps firstly if you are starting a project from scratch) is the
choice of server-side development language or platform. This development
platform will be used to write software that responds to HTTP requests. The
choice for a LAMP stack is usually PHP or Python. We have chosen PHP due
to its access to low-level HTTP features, object-oriented support, C-like
syntax, and its wide proliferation on the web.

Other technologies like ASP.NET are available to those interested in working
entirely inside the Microsoft platform. Each technology does have real
advantages and disadvantages, but we will not be addressing them here.

We should mention the unique case of node.js, which is both a JavaScript
server-side scripting platform analogous to PHP or ASP.NET and at the same
time, it is also web server software analogous to Apache or IIS. Node.js is
part of the MEAN web stack, and is especially well suited for high-traffic
websites. We will be covering node.js in more detail in Chapter 20.

2.7 Chapter Summary

The chapter focused on the key protocols and concepts that make the web
work. The DNS, URLs, and the HTTP protocol are key technologies utilized
by webservers and browsers. It also examined in brief both the browser and
the server. Different web application development stacks were also described.

2.7.1 Key Terms

e address resolution

e Apache

e Application stack

e application layer

e country code top-level domain (ccTLD)

e DNS resolver

e DNS server

e domain names

e domain name registrars

e Domain Name System (DNS)

e FIP

o four-layer network model

® generic top-level domain (gTLD)

GET request
HTTP

Internet Corporation for Assigned Names and Numbers (ICANN)

Internet Assigned Numbers Authority (IANA)

internationalized top-level domain name (IDIN)

Internet layer

Internet Protocol (IP)

IP address

LAMP software stack

link layer
MAC addresses

MEAN software stack

packet
protocol

port
POST request

protocol

request

e request headers

® response codes

e response headers

e reverse DNS lookups

® 100t name server

e second-level domain

o SFTP

e SSH

e subdomain

e TCP/IP (Transmission Control Protocol/Internet Protocol)

e transport layer
e Transmission Control Protocol (TCP)

e top-level domain (TLD)

e TLD name server

e User Datagram Protocol (UDP)

e Uniform Resource Locator (URL)

e web server

e WISA software stack

2.7.2 Review Questions

[N

. 1. Describe the main steps in the domain name registration process.
2. 2. What are the two main benefits of DNS?

3. 3. How many levels can a domain name have? What are generic top-
level domains?

4. 4. Describe the main steps in the domain name address resolution
process.

5. 5. How many requests are involved in displaying a single web page?
6. 6. Describe the four layers in the four-layer network model.

7. 7. What is the Internet Protocol (IP)? Why is it important for web
developers?

8. 8. How many distinct domains can be hosted at a single IP address?

9. 9. What is the LAMP stack? What are some of its common variants?
10. 10. How can browser extensions help and hinder web developers?
11. 11. What is browser caching? What value does it provide?

12. 12. What are the four key components of a web software stack?

2.7.3 References

1. 1. R. Braden, “Requirements for Internet Hosts—Application and
Support,” October 1989. [Online]. http://www.rfc-editor.org/rfc/
rfc1123.txt.

2. 2. E. R. Braden, “Requirements for Internet Hosts—Communication
Layers,” October 1989. [Online]. http://www.rfc-editor.org/rfc/
rfc1122.txt.

http://www.rfc-editor.org/rfc/rfc1123.txt
http://www.rfc-editor.org/rfc/rfc1122.txt

. 3. A. S. Tanenbaum, Computer Networks, Prentice Hall-PTR, 2002.

. 4. P. V. Mockapetris and K. J. Dunlap, “Development of the domain
name system,” 123-133, in Symposium proceedings on communications
architectures and protocols (SIGCOMM ‘88), New York, NY, 1988.

. 5. ICANN, “Reveal Day 13 June 2012—New gTLD Applied-For

Strings,” June 2012. [Online]. http://newgtlds.icann.org/en/program-
status/application-results/strings-1200utc-13jun12-en.

. 6. World Intellectual Property Association. [Online]. http://
www.wipo.int/amc/en/domains/cctld_db/index.html.

. 7. T. Berners-Lee et al., “Hypertext Transfer Protocol—HTTP/1.1,”
June 1999. [Online]. http://www.rfc-editor.org/rfc/rfc2616.txt.

. 8. BuiltWith. Websites using nginx. [Online]. http://
trends.builtwith.com/Web-Server/nginx.

http://newgtlds.icann.org/en/program-status/application-results/strings-1200utc-13jun12-en
http://www.wipo.int/amc/en/domains/cctld_db/index.html
http://www.rfc-editor.org/rfc/rfc2616.txt
http://trends.builtwith.com/Web-Server/nginx

3 Introduction to HTML

Chapter Objectives

In this chapter you will learn ...

e A very brief history of HTML

The syntax of HTML

Why semantic structure is so important for HTML

How HTML documents are structured

A tour of the main elements in HTML

e The semantic structure elements in HTML5

This chapter provides an overview of HTML, the building block of all web
pages. The massive success and growth of the web has in large part been due
to the simplicity of this language. There are many books devoted just to
HTML; this book covers HTML in just two chapters. As a consequence, this
chapter skips over some details and instead focuses on the key parts of
HTML.

3.1 What Is HTTML and Where Did
It Come from?

Dedicated HTML books invariably begin with a brief history of HTML. Such
a history might begin with the ARPANET of the late 1960s, jump quickly to
the first public specification of the HTML by Tim Berners-Lee in 1991, and
then to HTML's codification by the World Wide Web Consortium (better
known as the W3C) in 1997. Some histories of HTML might also tell stories
about the Netscape Navigator and Microsoft Internet Explorer of the early
and mid-1990s, a time when intrepid developers working for the two browser
manufacturers ignored the W3C and brought forward a variety of essential
new tags (such as, for instance, the <table> tag), and features such as CSS
and JavaScript, all of which have been essential to the growth and
popularization of the web.

Perhaps in reaction to these manufacturer innovations, in 1998 the W3C froze
the HTML specification at version 4.01. This specification begins by stating:

To publish information for global distribution, one needs a universally
understood language, a kind of publishing mother tongue that all
computers may potentially understand. The publishing language used by
the World Wide Web is HTML (from HyperText Markup Language).

As one can see from the W3C quote, HTML is defined as a markup language.
A markup language is simply a way of annotating a document in such a way
as to make the annotations distinct from the text being annotated. Markup
languages such as HTML, Tex, XML, and XHTML allow users to control
how text and visual elements will be laid out and displayed. The term comes
from the days of print, when editors would write instructions on manuscript
pages that might be revision instructions to the author or copy editor. You
may very well have been the recipient of markup from caring parents or
concerned teachers at various points in your past, as shown in Figure 3.1 .

Figure 3.1 Sample ad-hoc
markup languages

Figure 3.1 Full Alternative Text

At its simplest, markup is a way to indicate information about the content

that is distinct from the content. This “information about content” in HTML
is implemented via tags (or more formally, HTML elements, but more on that
later). The markup in Figure 3.1 consists of the red text and the various
circles and arrows and the little yellow sticky notes. HTML does the same
thing but uses textual tags.

In addition to specifying “information about content” many markup
languages are able to encode information how to display the content for the
end user. These presentation semantics can be as simple as specifying a bold
weight font for certain words, and were a part of the earliest HTML
specification. Although combining semantic markup with presentation
markup is no longer permitted in HTML5, “formatting the content™ for
display remains a key reason why HTML was widely adopted.

mBackground

Created in 1994, the World Wide Web Consortium (W3C) is the main
standards organization for the World Wide Web (WWW). It promotes
compatibility, thereby ensuring web technologies work together in a
predictable way.

To help in this goal, the W3C produces Recommendations (also called
specifications). These Recommendations are very lengthy documents that are
meant to guide manufacturers in their implementations of HTML, XML, and
other web protocols.

The membership of the W3C at present consists of almost 400 members;
these include businesses, government agencies, universities, and individuals.

3.1.1 XHTML

Instead of growing HTML, the W3C turned its attention in the late 1990s to a
new specification called XHTML 1.0, which was a version of HTML that
used stricter XML (extensible markup language) syntax rules (see

Background next).

But why was “stricter” considered a good thing? Perhaps the best analogy
might be that of a strict teacher. When one is prone to bad habits and is
learning something difficult in school, sometimes a teacher who is more
scrupulous about the need to finish daily homework may actually in the long
run be more beneficial than a more permissive and lenient teacher.

As the web evolved in the 1990s, web browsers evolved into quite permissive
and lenient programs. They could handle sloppy HTML, missing or
malformed tags, and other syntax errors. However, it was somewhat
unpredictable how each browser would handle such errors. The goal of
XHTML with its strict rules was to make page rendering more predictable by
forcing web authors to create web pages without syntax errors.

To help web authors, two versions of XHTML were created: XHTML 1.0
Strict and XHTML 1.0 Transitional. The strict version was meant to be
rendered by a browser using the strict syntax rules and tag support described
by the W3C XHTML 1.0 Strict specification; the transitional
recommendation is a more forgiving flavor of XHTML, and was meant to act
as a temporary transition to the eventual global adoption of XHTML Strict.

mBackground

Like HTML, XML is a textual markup language. Also like HTML, the
formal rules for XML were set by the W3C.

XML is a more general markup language than HTML. It is (and has been)
used to mark up any type of data. XML-based data formats (called schemas
in XML) are almost everywhere. For instance, Microsoft Office products
now use compressed XML as the default file format for the documents it
creates. RSS data feeds use XML and Web 2.0 sites often use XML data
formats to move data back and forth asynchronously between the browser
and the server. The following is an example of a simple XML document:

<?xml version=“1.0" encoding=“IS0-8859-1"7>

<art>
<painting id=“290">
<title>Balcony</title>
<artist>
<name>Manet</name>
<npationality>France</nationality>
</artist>
<year>1868</year>
<medium>0il on canvas</medium>
</painting>
</art>

By and large, the XML-based syntax rules (called “well formed” in XML
lingo) for XHTML are pretty easy to follow. The main rules are:

e There must be a single root element.

Element names are composed of any of the valid characters (most
punctuation symbols and spaces are not allowed) in XML.

Element names can't start with a number.

Element and attribute names are case sensitive.

Attributes must always be within quotes.
e All elements must have a closing element (or be self-closing).

XML also provides a mechanism for validating its content. It can check, for
instance, whether an element name is valid, or elements are in the correct
order, or that the elements follow a proper nesting hierarchy. It can also
perform data type checks on the text within an element: for instance, whether
the text inside an element called <date> is actually a valid date, or the text
within an element called <year> is a valid integer and falls between, say, the
numbers 1950 and 2010. Chapter 19 covers XML in more detail.

The payoff of XHTML Strict was to be predictable and standardized web
documents. Indeed, during much of the 2000s, the focus in the professional

web development community was on standards: that is, on limiting oneself to
the W3C specification for XHTML.

A key part of the standards movement in the web development community of
the 2000s was the use of HTML validators (see Figure 3.2) as a means of
verifying that a web page's markup followed the rules for XHTML
Transitional or Strict. Web developers often placed proud images on their
sites to tell the world at large that their site followed XHTML rules (and also
to communicate their support for web standards).

T L

Markup Validation Service

aldats by R0 vangate by Flie Upigad waligats by Degt nput

Validate by URI

VakiEa & dlemee® otlird

Moe

+ More Oplions

This vlclatior chastios tha mataup validity of Wish dooumdants in BITML, XETML, SMIL, MatnML, sbc. you wish 0 valdate
epacic cordond such as FESSAtom feats or G55 shloahosts, MotikeOR contanl, of b find broan links, fere am oiher
winkoaions snd loods svadabla, Aa &0 altermstive you can also by our peo-OT D-hased validntor

[BN B = i Loy - u| 3
This WaC

Nu Html Checker

Showing results for contents of text-input area

™" o 5 .. ; Ohpr b ot

LR

VALIDATOR

Homa Abou

Srow B e curicg mage regart Cytiora
Ol iy e ol ﬂ

«IBOCTVI gntn

AL

e L0 w0 it et 1 L0 s s s
whatellye

o Lo e el L TR e R U
iy

allsliem Baflls

Validator provides Cruck
feedback on markup's .
validity according to e

W3C specification

L] Beer An =g eberment must have an alt stiribule, excepl under certsin conditions. For details, consult
UG O preaiding teut alomatived o imags.
Firoen e £4. cohome 5% ing §4, colums 43

£l tue <lag dfe="whitdrar.glif” clads="tEaEk™r+

Figure 3.2 W3C markup
validation service

Figure 3.2 Full Alternative Text

Yet despite the presence of XHTML validators and the peer pressure from
book authors, actual web browsers tried to be forgiving when encountering
badly formed HTML so that pages worked more or less how the authors
intended regardless of whether a document was XHTML valid or not.

In the mid-2000s, the W3C presented a draft of the XHTML 2.0
specification. It proposed a revolutionary and substantial change to HTML.
The most important was that backwards compatibility with HTML and
XHTML 1.0 was dropped. Browsers would become significantly less
forgiving of invalid markup. The XHTML 2.0 specification also dropped
familiar tags such as , <a>,
, and numbered headings such as <h1>.
Development on the XHTML 2.0 specification dragged on for many years, a
result not only of the large W3C committee in charge of the specification, but
also of gradual discomfort on the part of the browser manufacturers and the
web development community at large, who were faced with making
substantial changes to all existing web pages.

3.1.2 HITMLS

At around the same time the XHTML 2.0 specification was being developed,
a group of developers at Opera and Mozilla formed the WHATWG (Web
Hypertext Application Technology Working Group) group within the W3C.
This group was not convinced that the W3C's embrace of XML and its
abandonment of backwards-compatibility was the best way forward for the
web. Thus the WHATWG charter announced:

“The Web Hypertext Applications Technology working group therefore
intends to address the need for one coherent development environment
for Web applications, through the creation of technical specifications

that are intended to be implemented in mass-market Web browsers.”

That is, WHATWG was focused less on semantic purity and more on the web
as it actually existed. As well, unlike the large membership of the W3C, the
WHATWG group was very small and led by Ian Hickson. As a consequence,
the work at WHATWG progressed quickly, and eventually, by 2009, the
W3C stopped work on XHTML 2.0 and instead adopted the work done by
WHATWG and named it HTML5.

There are three main aims to HTML)5:
1. Specify unambiguously how browsers should deal with invalid markup.

2. Provide an open, nonproprietary programming framework (via
JavaScript) for creating rich web applications.

3. Be backward compatible with the existing web.

While parts of the HTMLS5 are still being finalized, all of the major browser
manufacturers have at least partially embraced HTML5. Certainly not all
browsers and all versions support every feature of HTML5. This is in fact by
design. HTML in HTMLS5 is now a living language: that is, it is a language
that evolves and develops over time. As such, every browser will support a
gradually increasing subset of HTML5 capabilities. In late September 2012,
the W3C announced that they planned to have the main elements of the
HTML5 specification moved to Recommendation status (i.e., the
specification would be finalized in terms of features) in October 2014, and
the less-stable parts of HTML5 moved to HTML5.1 (with a tentative
completion date by late 2016).

This certainly creates complications for web developers. Does one only use
HTML elements that are universally supported by all browsers, or all the
newest elements supported only by the most recent browsers, or ...
something in between? This is an interesting question as well for the authors
of this textbook. Should we cover only what is supported by the HTML5
standard or should we cover some of the new features in HTML5.17?

In this text, we have taken the position that in general, as potential web

development professionals, you will likely be using an up-to-date browser.
As such, this book assumes that you are using a browser that supports at least
some of the HTML5.1 features.

3.2 HTML Syntax

The current W3C Recommendation for HTML is the HTML5 specification,
which dates back to 2014. In that specification the syntax for marking up
documents was defined and centered around using elements and attributes
(see Section 3.2.1).

« Hands-on Exercises L.ab 3
Exercise

First Web Page

Learning the fundamental concepts and terms that have survived multiple
standards is essential in a discipline like web development where
specifications, standards, and browsers are constantly evolving.

3.2.1 Elements and Attributes

HTML documents are composed of textual content and HTML elements. The
term HTML element is often used interchangeably with the term tag.
However, an HTML element is a more expansive term that encompasses the
element name within angle brackets (i.e., the tag) and the content within the
tag (though some elements contain no extra content).

An HTML element is identified in the HTML document by tags. A tag
consists of the element name within angle brackets. The element name
appears in both the beginning tag and the closing tag, which contains a
forward slash followed by the element's name, again all enclosed within
angle brackets. The closing tag acts like an off-switch for the on-switch that
is the start tag.

HTML elements can also contain attributes. An HTML attribute is a
name=value pair that provides more information about the HTML element. In
XHTML, attribute values had to be enclosed in quotes; in HTML)5, the
quotes are optional, though many web authors still maintain the practice of
enclosing attribute values in quotes. Some HTML attributes expect a number
for the value. These will just be the numeric value; they will never include
the unit.

Figure 3.3 illustrates the different parts of an HTML element, including an
example of an empty HTML element. An empty element does not contain
any text content; instead, it is an instruction to the browser to do something.
Perhaps the most common empty element is , the image element. In
XHTML, empty elements had to be terminated by a trailing slash (as shown
in Figure 3.3). In HTML)5, the trailing slash in empty elements is optional.

Opening tag Closing tag
I . .
Central Park
T 1 1
Element name Attribute Content

(may be text or other HTML elements)

Exampleemptyelement{
-
Element name Trailing slash {optional)

Figure 3.3 The parts of an
HTML element

Figure 3.3 Full Alternative Text

3.2.2 Nesting HTML Elements

Often an HTML element will contain other HTML elements. In such a case,
the container element is said to be a parent of the contained, or child,

element. Any elements contained within the child are said to be descendants
of the parent element; likewise, any given child element may have a variety
of ancestors.

“yNote

In XHTML, all HTML element names and attribute names had to be
lowercase. HTML5 (and HTML 4.01 as well) does not care whether you use
upper- or lowercase for element or attribute names. Nonetheless, this book
will follow XHTML usage and use lowercase for all HTML names and
enclose all attribute values in quotes.

This underlying family tree or hierarchy of elements (see Figure 3.4) will be
important later in the book when you cover Cascading Style Sheets (CSS)
and JavaScript programming and parsing. This concept is called the
Document Object Model (DOM) formally, though for now we will only refer
to its hierarchical aspects.

Ancestor

Y
| <body> -« | Parent
Chitd > P~ '
' This is some text
“:-"[}}

» <h1>Title goes here</hi>
sibling ___ d'i =

Descendants l

> <p>
This is <span=important
</p=>
</div>
</body>
<body>
Descendants Children | 1
¥ S
<p> <h1> <dijv>
M ———] A
| Siblings |
<strong= <p-
[Ancestors
/!

Figure 3.4 HTML document
outline

Figure 3.4 Full Alternative Text

In order to properly construct this hierarchy of elements, your browser
expects each HTML nested element to be properly nested. That is, a child's
ending tag must occur before its parent's ending tag, as shown in Figure 3.5 .

Correct nesting
& = 1
<h1>Share Your Travels</hi>
— —_—

Incorrect nesting
L e e 98

<h1>Share Your Travels</hi1>
—

Figure 3.5 Correct and

incorrect ways of nesting
HTML elements

Figure 3.5 Full Alternative Text

3.3 Semantic Markup

In Figure 3.1 , some of the yellow sticky note and red ink markup examples
are instructions about how the document will be displayed (such as, “main
heading” or “bulleted”). You can do the same thing with HTML presentation
markup, but this is no longer considered to be a good practice. Instead, over
the past decade, a strong and broad consensus has grown around the belief
that HTML documents should only focus on the structure of the document;
information about how the content should look when it is displayed in the
browser is best left to CSS (Cascading Style Sheets), a topic introduced in the
next chapter, and then covered in more detail in Chapter 7.

As a consequence, beginning HTML authors are often counseled to create
semantic HTMI. documents. That is, an HTML document should not
describe how to visually present content, but only describe its content's
structural semantics or meaning. This advice might seem mysterious, but it is
actually quite straightforward.

Examine the paper documents shown in Figure 3.6 . One is a page from the
United States IRS explaining the 1040 tax form; another is a page from a
textbook (Data Structures and Problem Solving Using Java by Mark Allen
Weiss, published by Addison Wesley). In each of them, you will notice that
the authors of the two documents use similar means to demonstrate to the
reader the structure of the document. That structure (and to be honest the
presentation as well) makes it easier for the reader to quickly grasp the
hierarchy of importance as well as the broad meaning of the information in
the document.

Flling
Requirements

| -

L L L e LT

- il b’ e - el &
e e it Ta Rl o

:\:.I-l tl-:l-'. e I 5

o 0 oy et

By &l e M‘ = -
@ =L T Ty
o T L
e o o
e ey e
.m'wﬂ--n':am

b

M e, B sk i s i1

[chapler 15 inmer glassos and implomentation of 1772y ist |
- e 4: whenent, ¥ian, wnd eiagpcy, I o e e Eumilier mathads pCFires, psiant
s ey Ky i L VT e and Bl clins. i3 AL LR, st et el e ksow e pat of
=== e jwvaii | ivemd et dnsiod. m doma 8, Linkedlink exioreh Degan, Adkdition-

i e e o 0

When and Where e
Should Yeu Fila?

part four Implementations

© 7 merwier and Bner classes 570
3 i dbarrmalalleciion clesa (A
14 mrimiuiler 8

T Em BEA PRI BEL Ty - WE
125 double-ended queues
A oy evded uerar dikoowt 0 B 0 g, orcepi il siom boalrend L edesall
b e, Baw; % i T e i
™l e, Brmyio |03 e b appiiibon of i deger, sl e &
i i e sebm i detied, e B ned 0 B iRerelee .,."..' —

il i, e tad, sl rmisdas

Al) T S S R e iR W
wpiisa. Thea iglinaation = Rl i Plaicls 00, Homev imig s aligly
Beked lnd ooy il wack oIl Bocand o o Al ull o e il lad e
w o gy bwd hel

B ¢ ki e ol Rl G kg vl Ths (medas
Y. . T ™

ally. Jovn 6 powidis & dew (s, Mvedems, il imglemens. tepm The
dr sl e un llicel sy aspicamsain of e Uy desribed i i
chapanr and ruay b srmmostun br for guue oparsibonn o L dnked fat

L5 implemstetion of irrerl [l with o ereee oy
o

BLIFATATY

s P o sl inplamsanibn of ihe dsch s quess <l
st chasis i o nphsmsnad b g ol guanm arvas o0 8 lisked b
B i e s o, s o] el o s,

. e amay st [ouc of ' igarousd 0 (mplemenl g
G I G WL 8
::' il -:' dhmibbe e com e A girer B aliees mar ol bt rs 4050
i qme g (1w s rane on bk ateims i the hegliaieg of e sy
when il sk ke ol 4580

L

te i b implemen amons
W dincke ol
Ba e Bog
TR0 comparison of e heo metady £
£0 e faant), Stach chaws
Teh doulsleended quaies [

1. Uning m insgdomestaton fhat ooy oot prorve pomstar-ime accow g @
b v Thir i s s fow s oo Tickenay

Figure 3.6 Visualizing structure

Figure 3.6 Full Alternative Text

Structure is a vital way of communicating information in paper and electronic
documents. All of the tags that we will examine in this chapter are used to
describe the basic structural information in a document, such as headings,
lists, paragraphs, links, images, navigation, footers, and so on.

Eliminating presentation-oriented markup and writing semantic HTML

markup has a variety of important advantages:

e Maintainability. Semantic markup is easier to update and change than
web pages that contain a great deal of presentation markup. Our students
are often surprised when they learn that more time is spent maintaining
and modifying existing code than in writing the original code. This is
even truer with web projects. From our experience, web projects have a
great deal of “requirements drift” due to end user and client feedback
than traditional software development projects.

e Performance. Semantic web pages are typically quicker to author and
faster to download.

e Accessibility. Not all web users are able to view the content on web
pages. Users with sight disabilities experience the web using voice
reading software. Visiting a web page using voice reading software can
be a very frustrating experience if the site does not use semantic markup.
As well, many governments insist that sites for organizations that
receive federal government funding must adhere to certain accessibility
guidelines. For instance, the United States government has its own
Section 508 Accessibility Guidelines (http://www.section508.gov).

e23Pro Tip

You can learn about web accessibility by visiting the W3C Web
Accessibility initiative website (http://www.w3.org/WAI). The site
provides guidelines and resources for making websites more accessible
for users with disabilities. These include not just blind users, but users
with color blindness, older users with poor eyesight, users with
repetitive stress disorders from using the mouse, or even users suffering
from ADHD or short-term memory loss. One of the documents
produced by the WAI is the Web Content Accessibility Guidelines,
which is available via http://www.w3.org/WAI/intro/wcag.php.

e Search engine optimization. For many site owners, the most important
users of a website are the various search engine crawlers. These crawlers

http://www.section508.gov
http://www.w3.org/WAI
http://www.w3.org/WAI/intro/wcag.php

are automated programs that cross the web scanning sites for their
content, which is then used for users' search queries. Semantic markup
provides better instructions for these crawlers: it tells them what things
are important content on the site.

But enough talking about HTML ... it is time to examine some HTML
documents.

3.4 Structure of HTML. Documents

Figure 3.7 illustrates one of the simplest valid HTML5 documents you can
create. As can be seen in the corresponding capture of the document in a
browser, such a simple document is hardly an especially exciting visual
spectacle. Nonetheless, there is something to note about this example before
we move on to a more complicated one.

o <|DOCTYPE html=>

<title>A Very Small Document</title>
<p>This is a simple document with not much content</p>

i C=a0n
T / [A Very Small Document

| « C' Q listing02-01.html A |

This is a smmple document with not much content

Figure 3.7 One of the simplest
possible HTML5 documents

Figure 3.7 Full Alternative Text

The <title> element (item @ in Figure 3.7) is used to provide a broad
description of the content. The title is not displayed within the browser
window. Instead, the title is typically displayed by the browser in its window
and/or tab, as shown in the example in Figure 3.7 . The title has some
additional uses that are also important to know. The title is used by the
browser for its bookmarks and its browser history list. The operating system
might also use the page's title, for instance, in the Windows taskbar or in the

Mac dock. Perhaps even more important than any of the aforementioned
reasons, search engines will typically use the page's title as the linked text in
their search engine result pages.

For readers with some familiarity with XHTML or HTML 4.01, this listing
will appear to be missing some important elements. Indeed, in previous
versions, a valid HTML document required additional structure. Figure 3.8
illustrates a more complete HTML5 document that includes these other
structural elements as well as some other common HTML elements.

<html lang="en">
0- —— <head>

<meta charset="utf-8" />

<!DOCTYPE html=>

5,

9 oo <title>Share Your Travels -- New York - Central Park</title>
<link rel="stylesheet" href="css/main.css" /> —0
<script src="js/htmlbdshiv.js"></script> —o
—— </head>
— <body>

<h1=Main heading goes here</h1>

o_

</body>
</html>

Figure 3.8 Structure elements
of an HTML5 document

Figure 3.8 Full Alternative Text

In comparison to Figure 3.7 , the markup in Figure 3.8 is somewhat more
complicated. Let's examine the various structural elements in more detail.

L23Pro Tip

The <title> element plays an important role in search engine optimization
(SEO), that is, in improving a page's rank (its position in the results page after
a search) in most search engines. While each search engine uses different
algorithms for determining a page's rank, the title (and the major headings)
provides a key role in determining what a given page is about.

As a result, be sure that a page's title text briefly summarizes the document's
content. As well, put the most important content first in the title. Most
browsers limit the length of the title that is displayed in the tab or window
title to about 60 characters. Chapter 23 goes into far greater detail on SEO.

3.4.1 Doctype

Eo

Item “ in Figure 3.8 points to the DOCTYPE (short for Document Type
Definition) element, which tells the browser (or any other client software that
is reading this HTML document) what type of document it is about to
process. Notice that it does not indicate what version of HTML is contained
within the document: it only specifies that it contains HTML. The HTML5
doctype is quite short in comparison to one of the standard doctype
specifications for XHTML.:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd”>

The XHTML doctype instructed the browser to follow XHTML rules. In the
early years of the 2000s, not every browser followed the W3C specifications
for HTML and CSS; as support for standards developed in newer browsers,
the doctype was used to tell the browser to render an HTML document using
the so-called standards mode algorithm or render it with the particular
browser's older nonstandards algorithm, called quirks mode.

Document Type Definitions (DTD) define a document's type for markup
languages such as HTML and XML. In both these markup languages, the
DTD must appear near the beginning of the document. DTDs have their own
syntax that defines allowable element names and their order. The following
code from the official XHTML DTD defines the syntax of the <p> element:

<!ELEMENT p %Inline;>
<IATTLIST p

%attrs;

%TextAlign;

>

Within XML, DTDs have largely been replaced by XML schema.

3.4.2 Head and Body

HTMLS5 does not require the use of the <html>, <head>, and <body> elements

(items &, & and Oin Figure 3.8). However, in XHTML they were
required, and most web authors continue to use them. The <html> element is
sometimes called the root element as it contains all the other HTML elements
in the document. Notice that it also has a lang attribute. This optional
attribute tells the browser the natural language that is being used for textual
content in the HTML document, which is English in this example. This
doesn't change how the document is rendered in the browser; rather, search
engines and screen reader software can use this information.

%« Hands-on Exercises I.ab 3
Exercise

Additional Structure Tags

HTML pages are divided into two sections: the head and the body, which
correspond to the <head> and <body> elements. The head contains descriptive
elements about the document, such as its title, any style sheets or JavaScript
files it uses, and other types of meta information used by search engines and
other programs. The body contains content (both HTML elements and regular
text) that will be displayed by the browser. The rest of this chapter and the
next chapter will cover the HTML that will appear within the body.

L“¥Note

In HTML5, the use of the <html>, <head>, and <body> elements is optional
and even in an older, non-HTMLS5 browser your page will work fine without
them (as the browser inserts them for you). However, for conformity with
older standards, this text's examples will continue to use them.

You will notice that the <head> element in Figure 3.8 contains a variety of

additional elements. The first of these is the <meta> element (item *@?:'?). The
example in Figure 3.8 declares that the character encoding for the document
is UTF-8. Character encoding refers to which character set standard is being
used to encode the characters in the document. As you may know, every
character in a standard text document is represented by a standardized bit
pattern. The original ASCII standard of the 1950s defined English (or more
properly Latin) upper and lowercase letters as well as a variety of common
punctuation symbols using 8 bits for each character. UTF-8 is a more
complete variable-width encoding system that can encode all 110,000
characters in the Unicode character set (which in itself supports over 100
different language scripts).

o

Item 9 in Figure 3.8 specifies an external CSS style sheet file that is used
with this document. Virtually all commercial web pages created in the last
decade make use of style sheets to define the visual look of the HTML
elements in the document. Styles can also be defined within an HTML
document (using the <style> element, which will be covered in Chapter 4);
for consistency's sake, most sites place most or all of their style definitions
within one or more external style sheet files.

Notice that in this example, the file being referenced (main.css) resides
within a subfolder called css. This is by no means a requirement. It is
common practice, however, for web authors to place additional external CSS,
JavaScript, and image files into their own subfolders.

Finally, item @ in Figure 3.8 references an external JavaScript file. Most
modern commercial sites use at least some JavaScript. Like with style

definitions, JavaScript code can be written directly within the HTML or
contained within an external file. JavaScript will be covered in Chapters 8, 9,
10, and 20 (though JavaScript will be used as well in other chapters).

“SRemember

Each reference to an external file in an HTML document, whether it be an
image, an external style sheet, or a JavaScript file, generates additional HTTP
requests resulting in slower load times and degraded performance.

%« Hands-on Exercises I.ab 3
Exercise

Making Mistakes

3.5 Quick Tour of HITML Elements

HTMLS5 contains many structural and presentation elements—too many to
completely cover in this book. Rather than comprehensively cover all these
elements, this chapter will provide a quick overview of the most common
elements. Figure 3.9 contains the HTML we will examine in more detail
(note that some of the structural tags like <htm1> and <body> from the
previous section are omitted in this example for brevity's sake). Figure 3.10
illustrates how the markup in Figure 3.9 appears in the browser.

<body>
<h1>Share Your Travels</h1>
0— <h2>New York - Central Park</h2>
o_ <p>Photo by Randy Connolly</p>
<p>This photo of Conservatory Pond in

Central Park
New York City was taken on October 22, 2016 with a
Canon EOS 30D camera.

</p> | o

‘)-———

3)

<h3>Reviews</h3>
0 <div> [&
<p>By Ricardo on <time>2016-05-23</time></p>
<p>Easy on the HDR buddy.</p>
</div>
0 — L[
<div>
<p>By Susan on <time>2016-11-18</time></p>
<p>I love Central Park.</p>

</div> ‘J'
|
<p><smal1>Copyright © 2017 Share Your Travels</small></p>

</body> L @

Figure 3.9 Sample HTML5
document

Figure 3.9 Full Alternative Text

[} Share Your Travels - Nev X IR

L o C A A figure03-10.html

Share Your Travels

New York - Central Park

Photo by Randy Connolly

Thas phote of Conservatory Pond in Central Park New York City was taken on October 22, 2016 wath
a Canon EOS YD camera

Reviews
By Ricardo on 2016-05-23

Easy on the HDR. buddy.

Bv Susan on 2016-11-18
I love Central Park

Copvnight © 2017 Share Your Travels

Figure 3.10 Figure 3.9 in the
browser

Figure 3.10 Full Alternative Text

3.5.1 Headings

&

Item “ in Figure 3.9 defines two different headings. HTML provides six
levels of heading (h1 through h6), with the higher heading number indicating
a heading of less importance. In the real-world documents shown in Figure
3.6 , you saw that headings are an essential way for document authors to
show their readers the structure of the document.

Headings are also used by the browser to create a document outline for the
page. Every web page has a document outline. This outline is not something
that you see. Rather, it is an internal data representation of the control on the
page. This document outline is used by the browser to render the page. It is
also potentially used by web authors when they write JavaScript to
manipulate elements in the document or when they use CSS to style different
HTML elements.

This document outline is constructed from headings and other structural tags
in your content and is analogous to the outlines you may have created for
your own term papers in school (see Figure 3.11). There is a variety of web-
based tools that can be used to see the document outline. Figure 3.11
illustrates one of these tools; this one is available from http://

gsnedders.html5.org/outliner/.

http://gsnedders.html5.org/outliner/

<!DOCTYPE html>
<html>
¢head lang="en"s
<meta charset="ytf-§"s

ctitle>Term Paper 0ut1ine<!title>. '
¢/heads '

<body>
<hI>Term Paper Outlinec/h1s

22 Unetaolued ks

<h2>Introduction< /h2s

Salwhbn | -. S <h2>Background /hs

_“\ ‘db' : | <h3>Previous Researchc/h3s
Qj , <h3>Unresolved Issues¢/h3»

szP.uu
<h2>My Solutionc/h2>
<h3>Methodology</h3;
<h3>Results</h3;

<h3>Discusssionc/h3s

1. Term Paper Qutline <h2>Conclusion</h2>
1. Introduction /body>
2. Background htmls
1. Previous Research
2. Unresolved Issues
3. My Solution
1. Methodology
2. Results
3. Discusssion
4. Conclusion

Figure 3.11 Example document
outlines

Figure 3.11 Full Alternative Text

The browser has its own default styling for each heading level. However,
these are easily modified and customized via CSS. Figure 3.12 illustrates just
some of the possible ways to style a heading.

[ol[@
/[Share Your Travels - New |
€ - C Qlisting02-03html

:]Shm‘ferrwds -New G L

Share Your Travels| ¢ -+ ¢ o isingt20anmi

[|Share‘|'ourTfmIs New » \\J
Defat Browser Stng (Google Clrome ' Share Your Travels > € listing02:05htmi Y

hl styled usingthe following CSS

Share Your Travels

[n1 4 margin : 0 0 0 50px; coler :
helvetica, sans-serif; fong-style Kl slvledus:'ngtllefolhwi:gCSS

Bl { margin : 0 0 0 0; color : #cc6633; font : 200% arial,
helvetica, sans-secif: bazkground-coler : $FOEDCT: bewder @
2pw s0lid green; padding : Spu l0px: |}

/] Share Your Travels - New \
€ 9 € Qlisting0206him "

b1 styled using the following CS$

hi { margin : 0 0 0 0; padding: 20px; texc-align: cencer; color : #A61C07; fonc-family:
'Nesifer', cursive; font-size : 60pt; line-height: 5dpt; background: url (images/header-
background.jpg) repeat-x; height: 120px; |}

Figure 3.12 Alternate CSS

stylings of the same heading

Figure 3.12 Full Alternative Text

In practice, specify a heading level that is semantically accurate; do not
choose a heading level because of its default presentation (e.g., choosing
<h3> because you want your text to be bold and 16pt). Rather, choose the
heading level because it is appropriate (e.g., choosing <h3> because it is a
third-level heading and not a primary or secondary heading).

e23Pro Tip

Sometimes it is not obvious what content is a primary heading. For instance,
some authors make the site logo an <h1>, the page title an <h2>, and every
other heading an <h3> or less. Other authors don't use a heading level for the
site logo, but make the page title an <h1>.

3.5.2 Paragraphs and Divisions

Ttem © in Figure 3.9 defines two paragraphs, the most basic unit of text in
an HTML document. Notice that the <p> tag is a container and can contain
HTML and other inline HTML elements (the and <a> elements in
Figure 3.9). This term refers to HTML elements that do not cause a
paragraph break but are part of the regular “flow” of the text and are
discussed in more detail in Section 3.5.4.

The indenting on the second paragraph element is optional. Some developers
like to use indenting to differentiate a container from its content. It is purely a
convention and has no effect on the display of the content.

Don't confuse the <p> element with the line break element (
). The
former is a container for text and other inline elements. The line break
element forces a line break. It is suitable for text whose content belongs in a

single paragraph but which must have specific line breaks: for example,
addresses and poems.

Ttem © in Figure 3.9 illustrates the definition of a <div> element. This
element is also a container element and is used to create a logical grouping of
content (text and other HTML elements, including containers such as <p> and
other <div> elements).

The <div> element has no intrinsic presentation or semantic value; it is
frequently used in contemporary CSS-based layouts to mark out sections.

Finally, item ©in Figure 3.10 shows an <hr> element, which is used to add a
“break” between paragraphs or <div> elements. Browsers generally style the
<hr> element as a horizontal rule.

3.5.3 Links

Item @ in Figure 3.9 defines a hyperlink. Links are an essential feature of all
web pages. Links are created using the <a> element (the “a” stands for
anchor). A link has two main parts: the destination and the label. As can be
seen in Figure 3.13 , the label of a link can be text or another HTML element
such as an image.

Central Park

T T
Destination Label (text)
T

T
Label (image)

Figure 3.13 Two parts of a link

Figure 3.13 Full Alternative Text

%« Hands-on Exercises I.ab 3
Exercise

Linking

You can use the anchor element to create a wide range of links. These include
the following:

e Links to external sites (or to individual resources such as images or
movies on an external site).

e Links to other pages or resources within the current site.
e Links to other places within the current page.

e Links to particular locations on another page (whether on the same site
or on an external site).

e Links that are instructions to the browser to start the user's email
program.

e Links that are instructions to the browser to execute a JavaScript
function.

e Links that are instructions to the mobile browser to make a phone call.

Figure 3.14 illustrates the different ways to construct link destinations.

Link to external site
|

Central Park

Link to resource on external site
]

Central Park

Link to another page on same site as this page
S —

Home

Link to another place on the same page
e 5

Go to Top of Document</a=>

Sl
Defines anchor for a link to another place on same page

Link to specific place on another page
]

Reviews for product X

Link to email
|

Someone

Link to JavaScript function
|

5See This

Link to telephone (automatically dials the number

when user clicks on it using a smartphone browser)
]

Call toll free (800) 922-0579

Figure 3.14 Different link
destinations

Figure 3.14 Full Alternative Text

Dive Deeper

Figure 3.15 shows an early version of the book's website and its HTML (as
shown in Google's Chrome's Element Inspector, a very handy developer's
tool built into the browser).

B Fundometsi o Wik T x

€ 9 @ [homebdeicom ol |
.

e gasaard by fesifrass

I'undamentals of ———
1eh Development fEmf

Kt vverimg ol e Runclamnialy of web develint q

MELUT- BANPLES- TESTWOWALE BLOG LhE OOAMACT TOOLE-

€ D O [
8 0 O ! 0
Eienonts | Resoorces Mebwork Sources
“ Computed St e3how inharited
¥Yehtal langs"en-Us"> ¥ Styles + I§ &
<1-- Developed by Digital Cavalry 2012 (htip://theméforest.net/user/DigitalCavalry) --3 p]onrn@,gt:.']q {
E B Chiad s fhi sy
th' Yebody class="home page page-id-36 page-template page-tenplate-content-builder-php™s }
] Yidiv €lasss™de - body-urappers Maichad G55 Rl
Yodiv clejs.'dF-:ady'-'.nrer-u.tapper": . i k - common_hires.cssi7ied
<a jd="d¢-site-top-anchor™ name="dc-site-top-anchor™»</ax basic-slider .nav-pager
b odiv class="de-site-header™s.c/divy o .page { |
P idiv ide™de-primary . theme - nenu-wrapper - wrapper . dive display: inline-block; |
b cselect ids"de-prinary-thene-menu-responsive”s.c/selects background- isage:
Yediv classs"de.prinary. wrapper®s wrl(../img/basicsli.
Yodiv lassa"dl-iecondary -wrapper™? background-position: &
div classs"de -up-breads rumb - na .p,.nlicn ampty”s¢/dive center enter:
Tidiv classs"de page- seo-wrapper dc].\ynu! full -width™» Background- repeat s kno-
¥idiv Cl.\-“-‘d(-ﬂ.lﬂl" content”» repiat;
¥odiv closs="d¢-content -bullder-wrapper™ width: 16px;
¥idiv class=" de-sinteen de-columns ° style="padding-top:0pu;padding-bottom: height: 16px;
Jopoy Float ; left;™s margin: e dpx Ipx Opx
Yodlv classs"de-over-wrapper™ style="padding-right:opx;padding- Left:dpx; s g
Vidiv class<"de-basic-slider™ stylo="nargin-bottomidp;™s cursori palnter;
Fodiv class="sllder-opt lons™3_</dive }
¥odiv class="inngr-wrapper™> ok | common_hires.cesil?
Thi hecRescst 1 by pudiiahed by b culsaeful» marginE Gy
¢div classs"nav-next:btn~ style="display: none;™»</divs background: color:
cdiv classa®nav-prev-bin® \-'.;'lt'-'di.wld}". noni; e fdive transparent ;
tfdive o
¥idiv t|.|'-\-'||.w-|>.12:'f"> bechpround=repiibis A=
cdbv class="pape”s¢/divs reprots
T ? m padding: »px;
tdiv class="page page-on”»¢/divy !
¢div class="pape™s¢/divs div { user ageat stylesheet
tdiv class="pape”s«fdivs || e B
i\ namalln, & fulka:
n: ¥ Q hmi bedy dw o dv | div dv dv dv | div | divdc-ovebaregper | divdc-besic-slicer | divnavpager Iﬁ ﬂ-

Figure 3.15 Using <div>
elements to create a complex
layout

Figure 3.15 Full Alternative Text

Notice the many levels of nested <div> elements. Some are used by the CSS
framework that the site is using to create its basic layout grid (those with
class=*“grid_##"); others are given id or class attributes and are targeted
for specific styling in the underlying CSS file.

HTMLS5 has a variety of new semantic elements (which we will examine later
in Section 3.6) that can be used to reduce somewhat the confusing mass of
div within divs within divs that is so typical of contemporary web design.

=rNote

Links with the label “Click Here” were once a staple of the web. Today, such
links are frowned upon, as they do not provide any information to users as to

where the link will take them, are not very accessible, and as a verb “click” is
becoming increasingly inaccurate when one takes into account the growth of

mobile browsers. Instead, textual link labels should be descriptive. So instead
of using the text “Click here to see the race results” simply make the link text
“Race Results” or “See Race Results.”

3.5.4 URL Relative Referencing

Whether we are constructing links with the <a> element, referencing images
with the element, or including external JavaScript or CSS files, we
need to be able to successfully reference files within our site. This requires
learning the syntax for so-called relative referencing. As you can see from

Figure 3.14 , when referencing a page or resource on an external site, a full
absolute reference is required: that is, a complete URL as described in
Chapter 2 with a protocol (typically, http://), the domain name, any paths,
and then finally the file name of the desired resource.

However, when referencing a resource that is on the same server as your
HTML document, you can use briefer relative referencing. If the URL does
not include the “http://” then the browser will request the current server for
the file. If all the resources for the site reside within the same directory (also
referred to as a folder), then you can reference those other resources simply
via their file name.

However, most real-world sites contain too many files to put them all within
a single directory. For these situations, a relative pathname is required along
with the file name. The pathname tells the browser where to locate the file on
the server.

Pathnames on the web follow Unix conventions. Forward slashes (“/) are
used to separate directory names from each other and from file names.
Double-periods (“..”) are used to reference a directory “above” the current
one in the directory tree. Figure 3.16 illustrates the file structure of an
example site. Table 3.1 provides additional explanations and examples of the

different types of URL referencing.

Share-Your-Travels

(root folder)

J

index.html

about.html <<

example.htm] «€—

LY (LY I

images/

o
logo.qif €&—— < ----qf=-------

central-park.jpg

ML) (I

css/

main.css

111

images/

:] background.gif <€

members/

— index.htm]l

randyc/

——1 bio.html

Figure 3.16 Example site
directory tree

Figure 3.16 Full Alternative Text

Table 3.1 Sample Relative
Referencing

Relative Link Type Example

¥ Same Directory To link to example.html from about.html (in

To link to a file within ~ Eigure 3.16), use:

the same folder, simply

)
use the file name.

© Child Directory

To link to a file within a To link to logo.gif from about.html, use:
subdirectory, use the

name of the subdirectory
and a slash before the
file name.

Gfandchild/Descendant
Directory

To link to a file thatis g Jink to background.gif from about.html,

multiple subdirectories use:
below the current one,
construct the full path by
including each
subdirectory name
(separated by slashes)
before the file name.

(4] Parent/Ancestor

Directory To link to about.html from index.html in

< members, use:
Use “../” to reference a

folder above the current

one. If trying to

reference a file several To link to about.htm! from bio.html, use:
levels above the current
one, simply string
together multiple “../”.

To link to about.html from index.html! in

© sibling Directory b

Use “../” tomove upto <3 href=*../images/about.html”>
the appropriate level, and

then use the same To link to background.gif from bio.html, use:
technique as for child or

grandchild directories. =2

href="../../css/images/background.gif”>

© Root Reference

An alternative approach
for ancestor and sibling
references is to use the

so-called root reference

approach. In this To link to about.html from bio.html, use:
approach, begin the
reference with the root
reference (the “/”) and
then use the same
technique as for child or
grandchild directories.

Note that these will

only work on the

server! That is, they

will not work when you

test it out on your local

machine.

To link to background.gif from bio.html, use:

€ Default Document

Web servers allow
references to directory
names without file
names. In such a case,
the web server will serve
the default document,

which is usually a file ~ Or

called index.html
(apache) or Default.html
(ITS). Again, this will
only generally work on
the web server.

To link to index.html! in members from
about.html, use either:

L23Pro Tip

You can force a link to open in a new browser window by adding the
target=*“_blank” attribute to any link.

In general, most web developers believe that forcing a link to open in a new
window is not a good practice as it takes control of something (whether a
page should be viewed in its own browser window) that rightly belongs to the
user away from the user. Nonetheless, some clients will insist that any link to
an external site must show up in a new window.

3.5.5 Inline Text Elements

Back in Figure 3.9 the HTML example used three different inline text
elements (namely, the , <time>, and <small> elements). They are
called inline elements because they do not disrupt the flow of text (i.e., cause
a line break). HTML defines over 30 of these elements. Table 3.2 lists some
of the most commonly used of these elements.

Table 3.2 Common Text-Level
Semantic Elements

Element Description
<a> Anchor used for hyperlinks.
<abbr> Anp abbreviation

 Line break

<cite> (itation (i.e., a reference to another work)

Used for displaying code, such as markup or
programming code

 Emphasis

<mark> For displaying highlighted text

For displaying the fine-print, that is, “nonvital” text,
such as copyright or legal notices

The inline equivalent of the <div> element. It is

 generally used to mark text that will receive special
formatting using CSS

<code>

<small>

 For content that is strongly important
<time> For displaying time and date data

3.5.6 Images

Item @ in Figure 3.9 defines an image. While the tag is the oldest
method for displaying an image, it is not the only way. In fact, it is very
common for images to be added to HTML elements via the background-
image property in CSS, a technique you will see in Chapter 4. For purely
decorative images, such as background gradients and patterns, logos, border
art, and so on, it makes semantic sense to keep such images out of the markup
and in CSS where they more rightly belong. But when the images are content,
such as in the images in a gallery or the image of a product in a product
details page, then the tag is the semantically appropriate approach

%« Hands-on Exercises I.ab 3
Exercise

Adding Images

Chapter 6 examines the different types of graphic file formats. Figure 3.17
illustrates the key attributes of the element.

Specifies the URL of the image to display Text in tit1e attribute will be displayad in a pop-up
(note: uses standard relative referencing), tool tip when user moves mouse over image.

<img src="images/central-park.ipg" alt="Central Park® title="Central Park" width="80" height="40" /=

FR S S—
I |

Text in &1t attribute provides a brief Specifies the width and height of
description of image's content for users who image in pixels
are unable to see it.

Figure 3.17 The element

Figure 3.17 Full Alternative Text

3.5.7 Character Entities

Ttem © in Figure 3.9 illustrates the use of a character entity. These are
special characters for symbols for which there is either no easy way to type
them via a keyboard (such as the copyright symbol or accented characters) or
which have a reserved meaning in HTML (for instance the “<” or “>”
symbols). There are many HTML character entities. They can be used in an
HTML document by using the entity name or the entity number. Some of the
most common are listed in Table 3.3.

Table 3.3 Common Character
Entities

Entity Entity o
Name Number Description

Nonbreakable space. The browser ignores
multiple spaces in the source HTML file. If
you need to display multiple spaces, you can
do so using the nonbreakable space entity.

< < Less than symbol (“<”).

> > Greater than symbol (“>”).

© © The © copyright symbol

€ € The € euro symbol.

™ ™ The ™ trademark symbol.

ü ü The ii— that is, small u with umlaut mark.

3.5.8 Lists

Figure 3.9 is missing one of the most common block-level elements in
HTML, namely, lists. HTML provides three types of lists:

e Unordered lists. Collections of items in no particular order; these are by
default rendered by the browser as a bulleted list. However, it is
common in CSS to style unordered lists without the bullets. Unordered
lists have become the conventional way to markup navigational menus.

e Ordered lists. Collections of items that have a set order; these are by
default rendered by the browser as a numbered list.

e Description lists. Collection of name and description/definition pairs.
These tend to be used infrequently. Perhaps the most common example
would be a FAQ list. Unlike the other two lists (which contain <1i>
items within either a or parent container), the container for a
description list is the <d1> element. It contains <dt> (term or name to be
described) and <dd> (describes each term) pairs for each item in the list.

%« Hands-on Exercises I.ab 3
Exercise

Making a List Linking with Lists

As can be seen in Figure 3.18 , the ordered and unordered list elements are
container elements containing list item elements (<1i>). Other HTML
elements can be included within the <1i> container, as shown in the first list
item of the unordered list in Figure 3.18 . Notice as well in the ordered list
example in Figure 3.18 that this nesting can include another list.

<gl>
Introduction</1i>
Background</1i>

1

]

Notice that the list item element Hy Solution</1i>
29

can contain other HTML 1*
elements. Hﬁhﬁ“‘“umﬁhﬁnﬁﬁﬁﬁﬁﬁh
=Methodology</1i>

<yl <]i>Results</1i=
<]i»>Home</11i> <li=Discussion</1i>
About Us</1i>
Products</1i> </1i>
<1i>Contact Us</1i> <1i>Conclusion</1i>
<ful= <fol>
[(2O] o1&
) Example Lists « [Example Lists x
C 9 listing02-09.html Q € < C Qlisting02-10html 3,
¢ Home 1. Introduction
o AboutUs 2. Background
o Diodiia 3. My Solution
* Contact Us - oy
2. Results
3, Discussion
4. Conclusion
b F

Figure 3.18 List elements and
their default rendering

Figure 3.18 Full Alternative Text

L2SPro Tip

Many developers make use of the premade HTMLS5 starting file available at

http://htmlSboilerplate.com. Besides the basic HTMLS5 skeleton, it contains
links to helpful CSS and JavaScript files as well as useful viewport settings
(covered in Chapter 7) and Google analytics settings (covered in Chapter 24).

http://html5boilerplate.com

3.6 HTTML5 Semantic Structure
Elements

Section 3.3 discussed the idea of semantic markup and how it improves the
maintainability and accessibility of web pages. In the code examples so far,
the main semantic elements you have seen are headings, paragraphs, lists,
and some inline elements. You also saw the other key semantic block
element, namely, the division (i.e., <div> element).

Figure 3.15 did, however, illustrate one substantial problem with modern,
pre-HTML5 semantic markup. Most complex websites are absolutely packed
solid with <div> elements. Most of these are marked with different id or
class attributes. You will see in Chapter 7 that complex layouts are typically
implemented using CSS that targets the various <div> elements for CSS
styling. Unfortunately, all these <div> elements can make the resulting
markup confusing and hard to modify. Developers typically try to bring some
sense and order to the <div> chaos by using id or class names that provide
some clue as to their meaning, as shown in Figure 3.19 .

<body>
<div id="header">

" . <div id="top-navigation">
<header> o -
!:i </div>

</div> -Q| %

3] <div id="nain">
| <mé{n> - <div id="left-navigation">
LE
</div>

<h1>Page Title</h1>

<div class="content">
<h2>Stories</h2>

o — 1 <div class="story">

<gection> .
| — 0 ey
</div> 3

<div class="story">

<div class="story-photo"> ‘,

<p class="photo-caption">. .. <figure> é%
</div> | "

v <figcaption>
<div class="related-stuff-on-right">
}_ o <aside>
</div>
</div>

<div class="content">

</div>

</div>

o \ <div id="footer">
<footer> é <[div>
</body>

Figure 3.19 Sample <div>-
based XHTML layout (with
HTMLS5 equivalents)

Figure 3.19 Full Alternative Text

As HTMLS5 was being developed, researchers at Google and Opera had their
search spiders examine millions of pages to see what were the most common
id and class names. Their findings helped standardize the names of the new
semantic block structuring elements in HTML5, most of which are shown in

Figure 3.19 .

The idea behind using these elements is that your markup will be easier to
understand because you will be able to replace some of your <div> sprawl
with cleaner and more self-explanatory HTMLS5 elements. Figure 3.20
illustrates the simpler version of Figure 3.19 , one that uses the new semantic
elements in HTML5. Each of these elements is briefly discussed in the
following sections.

<body>
o <header>

<nav>
</nav> el 2 |

</header>
<main>

<nav=
o S </ nav>

<h1>Page Title</h1>
<section>
<h2>Stories</h2>
o_ <article> l_ 9
</article>
<article>

<figure=

<figcaption>... +_'(j

</figure= |

</article> i’

<aside>

-0
€I351de>

</section>
<section>

</section>
</main=>

<footer> " o
{Hfooterb

</body>=

Figure 3.20 Sample layout
using new HTML5 semantic

structure elements

Figure 3.20 Full Alternative Text

3.6.1 Header and Footer

Most website pages have a recognizable header and footer section. Typically
the header contains the site logo and title (and perhaps additional subtitles or
taglines), horizontal navigation links, and perhaps one or two horizontal
banners. The typical footer contains less-important material, such as smaller
text versions of the navigation, copyright notices, information about the site's
privacy policy, and perhaps twitter feeds or links to other social sites.

%« Hands-on Exercises I.ab 3
Exercise

Header and Footer

Both the HTML5 <header> and <footer> element can be used not only for

page headers and footers (as shown in items D and © in Figure 3.20), but
also for header and footer elements within other HTML5 containers, such as
<article> or <section>, as indicated by the W3C Recommendation:

A header element is intended to usually contain the section's heading (an
h1-h6 element), but this is not required. The header element can also be
used to wrap a section's table of contents, a search form, or any relevant
logos.

—W3C Recommendation

Listing 3.1 demonstrates both uses of the <header> element.

Listing 3.1 Heading example

<header>

<hi1>Fundamentals of Web Development</h1>

</header>
<article>
<header>
<h2>HTML5 Semantic Structure Elements</h2>
<p> By Randy Connolly</p>
<p><time>September 30, 2015</time></p>
</header>

</article>

The browser really doesn't care how one uses these HTML5 semantic
structure elements. Just like with the <div> element, there is no predefined
presentation for these tags.

3.6.2 Navigation

%<« Hands-on Exercises I.ab 3
Exercise

Navigation, Articles, and Sections

The <nav> element (item & in Figure 3.20) represents a section of a page
that contains links to other pages or to other parts within the same page. Like
the other new HTML5 semantic elements, the browser does not apply any
special presentation to the <nav> element. As you can see in the quote from
the WHATWG specification for HTMLS5 (that was used by the W3C in their
own Recommendation), the <nav> element was intended to be used for major
navigation blocks, presumably the global and secondary navigation systems

as well as perhaps search facilities. However, like all the new HTML5
semantic elements in Section 3.6, from the browser's perspective, there is no
definite right or wrong way to use the <nav> element. Its sole purpose is to
make your markup easier to understand, and by limiting the use of the <nav>
element to major elements, your markup will more likely achieve that aim.

Not all groups of links on a page need to be in a nav element—the
element is primarily intended for sections that consist of major
navigation blocks. In particular, it is common for footers to have a short
list of links to various pages of a site, such as the terms of service, the
home page, and a copyright page. The footer element alone is sufficient
for such cases; while a nav element can be used in such cases, it is
usually unnecessary.

—WHATWG HTML specification

Listing 3.2 illustrates a typical example usage of the <nav> element.

Listing 3.2 nav example

<header>

<hl1>Fundamentals of Web Development</hi1>
<nav>

Home</1i>
About Us</1i>
Browse</1i>

</nav>
</header>

3.6.3 Main

The <main> element (item < in Figure 3.20) was a late addition to the
HTMLS5 specification. It is meant to contain the main unique content of the
document. Elements that repeat across multiple pages (such as headers,

footers, and navigation) or are incidental to the main content (such as
advertisements and marketing callouts) do not belong in the <main> element.
As described by the W3C Recommendation, the main content area should
“consist of content that is directly related to or expands upon the central topic
of a document or central functionality of an application.”

While not a required element, as shown in Figure 3.20 , it provides a
semantic replacement for markup, such as <div id=“main”> or <div
id=“main-content”>. It is worth noting that the <main> element has some
clear usage rules. First, there should only be one <main> element in a
document. Second, it should not be nested within any the <article>,
<aside>, <footer>, <header>, or <nav> containers.

3.6.4 Articles and Sections

The book you are reading is divided into smaller blocks of content called
chapters, which make this long book easier to read. Furthermore, each
chapter is further divided into sections (and these sections into even smaller
subsections), all of which make the content of the book easier to manage for
both the reader and the authors. Other types of textual content, such as
newspapers, are similarly divided into logical sections. The new HTML5

semantic elements <section> and <article> (items ©and © respectively,
in Figure 3.20) play a similar role within web pages.

It might not be clear how to choose between these two elements. The W3C
specification provides us with some insight.

The article element represents a complete, or self-contained,
composition in a document ... and that is, in principle, interdependently
distributable or reusable.

The section element represents a generic section of a document or
application ... The theme of each section should be identified, typically
by including a heading (h1-h6 element) as a child of the section element.

—W3C HTML5 Recommendation

e23Pro Tip

You may have noticed that the language in these W3C and WHATWG
specifications can be rather “dull” and “heavy.” While they do try to provide
clarity by using consistent terminology throughout the specification, this
means that they can also be difficult to understand if one isn't familiar with
that terminology. Nonetheless, being able to read and decipher technical
documents is a skill that a computing professional eventually does need to
master.

According to the W3C, <section> is a much broader element, while the
<article> element is to be used for blocks of content that could potentially
be read or consumed independently of the other content on the page. We can
gain a further understanding of how to use these two elements by looking at
the more expansive WHATWG specification.

The section element represents a generic section of a document or
application. A section, in this context, is a thematic grouping of content,
typically with a heading. Examples of sections would be chapters, the
various tabbed pages in a tabbed dialog box, or the numbered sections of
a thesis. A Website's home page could be split into sections for an
introduction, news items, and contact information.

The article element represents a self-contained composition in a
document, page, application, or site and that is, in principle,
independently distributable or reusable, e.g. in syndication. This could
be a forum post, a magazine or newspaper article, a blog entry, a user-
submitted comment, an interactive widget or gadget, or any other
independent item of content.

—WHATWG HTML specification

The reference to syndication in the WHATWG explanation of the <article>
element is useful. In the context of the web, syndication refers to websites

making their content available to other websites for display. If some block of
content could theoretically exist on another website (as if it were syndicated)

and still make sense in that new context, then wrap that content within an
<article> element. If a block of content has some type of heading associated
with it, then consider wrapping it within a <section> element.

L=rNote

The WHATWG specification warns readers that the <section> element is
not a generic container element. HTML already has the <div> element for
such uses. When an element is needed only for styling purposes or as a
convenience for scripting, it makes sense to use the <div> element instead.
Another way to help you decide whether or not to use the <section> element
is to ask yourself if it is appropriate for the element's contents to be listed
explicitly in the document's outline. If so, then use a <section>; otherwise,
use a <div>.

3.6.5 Figure and Figure Captions

Throughout this chapter you have seen screen captures or diagrams or
photographs that are separate from the text (but related to it), which are
described by a caption, and which are given the generic name of Figure. Prior
to HTML5, web authors typically wrapped images and their related captions
within a nonsemantic <div> element. In HTMLS5 we can instead use the more

obvious <figure> and <figcaption> elements (items & and @ in Figure
3.20).

%« Hands-on Exercises I.ab 3
Exercise

Figures and Captions

The W3C Recommendation indicates that the <figure> element can be used

not just for images but for any type of essential content that could be moved
to a different location in the page or document and the rest of the document
would still make sense.

The figure element represents some flow content, optionally with a
caption, that is self-contained and is typically referenced as a single unit
from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams, photos,
code listings, etc, that are referred to from the main content of the
document, but that could, without affecting the flow of the document, be
moved away from that primary content, e.g. to the side of the page, to
dedicated pages, or to an appendix.

—WHATWG HTML specification

For instance, as I write this section, I will at some point make reference to
one of the figures or code listings. But I cannot write “the illustration above”
or “the code listing to the right,” even though it is possible that on the page
you are looking at right now, there is an illustration just above these words or
the code listing might be just to the right. I cannot do this because at the point
of writing these words, the actual page layout is still many months away. But
I can make nonspatial references in the text to “Figure 3.21 ” or to “Listing
3.3”—that is, to the illustration or code samples' captions. The figures and
code listings are not optional; they need to be in the text. However, their
ultimate position on the page is irrelevant to me as I write the text.

<p>This photo was taken on October 22, 2011 with a Canon E0S 30D camera.</p=>
<figure>

:

Figure could <fi tion=Conservatory Pond in Central Park</fi tion>

biraonad . gcaption=Conservatory Po entral Pa gcaptio

a different </figure>

location in <p>

document It was a wonderfully beautiful autumn Sunday, with strong sunlight and
expressive clouds. I was very fortunate that my one day in New York was

) blessed with such weather!

But it has to </p> [=]

exist in the e~

dO(UmE'l"It , = [+ ﬁ.!-umqbi-li.h-:ml =

{i.e., the This pheto was tken e Ocicber 22, 3011 wilh a Cason EOS MD camers

figure isnt

optional).

7 (" i b= il ; 4 " i
g e __.-.-_..r«-.l-.- f""'"TI;
4
i

<

ey

Comiarvatory Pond In Conral Park

It want & womclefidly boe il sobenm Sunday, with strong smlight and expressne cloudi. | was very
Tornaeats that my ons day i New York was blessed wigh mh weather!

Figure 3.21 The figure and
figcaption elements in the
browser

Figure 3.21 Full Alternative Text

l:JNote

The <figure> element should not be used to wrap every image. For instance,

it makes no sense to wrap the site logo or nonessential images such as banner
ads and graphical embellishments within <figure> elements. Instead, only
use the <figure> element for circumstances where the image (or other
content) has a caption and where the figure is essential to the content but its
position on the page is relatively unimportant.

Figure 3.21 illustrates a sample usage of the <figure> and <figcaption>
element. While this example places the caption below the figure in the
markup, this is not required. Similarly, this example shows an image within
the <figure>, but it could be any content.

3.6.6 Aside

The <aside> element (item Oin Figure 3.20) is similar to the <figure>
element in that it is used for marking up content that is separate from the
main content on the page. But while the <figure> element was used to
indicate important information whose location on the page is somewhat
unimportant, the <aside> element “represents a section of a page that
consists of content that is tangentially related to the content around the aside
element” (from WHATWG specification).

The <aside> element could thus be used for sidebars, pull quotes, groups of
advertising images, or any other grouping of nonessential elements.

e23Pro Tip

Prior to IE 9, CSS styles could not be applied to the semantic elements within
HTML5. The most common workaround to this problem was the so-called
HTMLS5 shiv, which is a JavaScript-based polyfill (see Pro Tip in Section
3.6.7). Some of the examples in later chapters include this shiv, which looks
like the following:

<!--[if 1t IE 9]>
<script src=“html5shiv.js”></script>
<![endif]-->

This code makes use of conditional comments, which are supported only by
[E. Other browsers will see this code as an HTML comment.

3.6.7 Details and Summary

Two of the new related semantic elements added to the HTML 5.1 Draft are
the <details> and <summary> elements. They represent, in the words of the
Draft, “a disclosure widget from which the user can obtain additional
information or controls.” What does this mean? One of the more common
uses of JavaScript in the user interface is so-called accordion widgets, which
are use used to toggle the visibility of a block of content (see Figure 3.22).

€ 0K O deialihr B34 0s=

Girl with a Pearl Earring

<body>
<h2>Girl with a Pearl Earring</h2>
<details>

<summary>Image</summary>

<p>Museum: Royal Picture Gallery Mauritshuis ...

Clicking on the summary label reveals .
< >
the rest of the content with the NN

<details> container <details>

<summary>Artist</summary>

€508 L BWderos <p>Jan Vermeer was a Dutch ..
Girl with a Pearl Earring </details>
<details>
<summary>Information</summary> -
<p>

Date: 1665

Medium: 011 on Canvas
</p>
</details>
</body>

Museuay Rovad Prcte Gallory Marsivhuis, Thae Hapar

Figure 3.22 The details and
summary elements

Figure 3.22 Full Alternative Text

The <details> and <summary> elements provide a way of representing this

functionality in markup. For browsers that support these elements (at the time
of writing, only Chrome, Opera, and Safari), the accordion functionality is
included as well (thus no JavaScript programming is required). Figure 3.22
illustrates the markup and the result in a supporting browser.

e23Pro Tip

One way to “safely” make use of new HTML elements that are not
universally available in all browsers is to make use of a so-called polyfill,
which is a small piece of JavaScript code that provides an implementation of
some functionality that is not yet available in some browsers. Like real-world
Polyfilla, which is typically used to fill a hole in a wall in your house, a
polyfill on the web fills a “hole” in your browser's (or more importantly, your
user's browser) functionality or supports new features in HTML or
JavaScript.

For instance, let's say you want to use the <details> element, but are worried
that users with Firefox or Edge browsers do not yet support this element. By
adding the relevant link to a JavaScript polyfill library for this element (and
perhaps adding some JavaScript initialization code), your users will be able
to experience this element regardless of whether their browser supports it.

L“kNote

HTML 5.1 defines other new semantic elements. The <dialog> element,
according to the Recommendation, “represents a part of an application that a
user interacts with to perform a task, for example, a dialog box, inspector, or
window.” Many web sites have pseudo dialogs implemented via a
combination of <div> elements plus CSS and JavaScript. The <dialog>
element provides a semantically clearer way of indicating such an element
within markup. However, at the time of writing, this element is only
supported in Chrome and Opera.

Another new set of related elements are the <menu> and <menuitem>

elements, which are, no surprise, used to represent a series of menu
commands. It is common in many contemporary web sites to style a list of
links as a toolbar with child options that appear via JavaScript. These two
elements provide a more semantically clear way of marking up such links.
Unfortunately, at the time of writing the only browser that provides partial
support of these elements is Firefox.

mTools Insight

There are many different ways to create HTML pages. Indeed, any program
that can edit and save text files can be used as an HTML editor. Nonetheless,
a proper tool can make creating web content easier. The authors have our
preferred tools, but we do not agree with one other, nor do we always use the
same tools (Randy tends to use Adobe Brackets, Microsoft Visual Code, or
Cloud9, while Ricardo favors Emacs, Eclipse, or Bluefish). Your instructor
may have chosen an HTML editor for you based on lab availability costs,
familiarity, or some other rationale.

While we won't be advocating for specific tools to create web content in this
book, we do think it is important to understand the different genres of web
development tools and their relative advantages and disadvantages. We have
classified web development tools into five categories: WYSIWYG editors,
code editors, full IDEs, cloud-based environments, and code playgrounds.

WYSIWYG editors. What-Y ou-See-Is-What-Y ou-Get refers to web tools
that provide a user experience analogous to using a word processor. The
advantage of such tools is that you do not need to know much (if any)
HTML. The disadvantage of such tools is, however, quite large. These tools
are never truly WYSIWYG and they often struggle with providing a preview
of more complicated CSS. Indeed, these tools almost always have to provide
users with a traditional HTML view for fixing such problems. While we
would never recommend only using such a tool, such tools can be helpful for
inexperienced end users. Adobe Dreamweaver (see Figure 3.23) and Adobe
Muse are two popular editors in this genre. Web-based publishing programs,
such as blogs or content management systems also make use of WYSIWYG

editors, such as TinyMCE.

§ Dreamweaver CC File Edit View Insert Modify

o0 Dw
® hapterdl-preject L ml
thageert-prejectl. e

Format Commands Site Window Help

T

CED 0 0B € 4 O [L eresiy e] . i
Clnck'}e\ﬁ"loomrltuunrhulddlmd-am
B B B B B B B B B B I B

del
quam
gk
Eastent
 quam

e e baere pe ol

Lovin' Tuscany

Omnicos directs al dewrabilite de un nov
lirsguaa franca: On refisa continuar payer
cLatos! rhduciones, Al S0imen vl edder
niecessl far uniform grammatics, profunciation

& Pl S0FIILA PArOies.
Love in Venezia
ucmlqumumaum
farnilie, Lor meparsl editonta ol i mth, Por
scirdle, musics, sport e, lisod Europa usa |
sem wocabular, L lingues dffere scimen in |l

frammitics, i pronunclabion & i plu commun
b,

@ 3 @ w4

Figure 3.23 A WYSIWYG

Defaukt - X
35 Desigrnr
+ Sources ; chaplertS-projact].cm
Fearst
iy
1, B2, BY, p, Doy, & M
sk B
+ - Properties
m = [how 5o
s
- H
|]
pasition : o
o
Dpx
[right:
G
Bamam:
==
=
-
Curreri: Mode: Lists rules for carent selestion
[+
o gl
head
Bady
article
hl
div clavi="rry
Pgure
L+
P &

editor [Adobe Dreamweaver]

Figure 3.23 Full Alternative Text

Code editors. Since web developers typically need knowledge of HTML,
CSS, JavaScript, and more, many web developers prefer to use tools that
allow them to focus on viewing and editing these text files. Nonetheless, it is
helpful to use a tool that “understands” HTML, CSS, and so on. Such a tool
might provide color coding, intelligent hints, tag completion, and so on.
There are a wide range of choices in this genre, many of them open source.
Some of the options include Atom, BlueFish, Brackets, Notepad++, Sublime
Text (see Figure 3.24), and Visual Studio Code.

LN = singls-painting php
OPEN FILES

Listirgl- 19.p%,
.

praject.ju

srow['Title'); T</his
srow['Lasthame']; Te</hi2

<><iphp echo $row['Excerpt'] . $r; 7></1>
fdivs req require ..
return
require_once ..
return false
return true

*Detailse/ o>
seume/ o>
o/

“cube icon"»</ >Subjectse/:>

E Line 50, Columa 60

Figure 3.24 A Code Editor
[Sublime Text]

Figure 3.24 Full Alternative Text

Full IDEs. Integrated Development Environments provide a more full-
featured programming experience. They not only provide most of the same
functionality as the previously mentioned code editors, but also typically
provide extra capabilities, such as comprehensive help files, build tools,
multiple-language support, and integration with other enterprise tools, such as
databases. Some of the options in this genre include Eclipse (see Figure 3.25
), NetBeans, and Visual Studio. This extra power does come at a price, both
figuratively and literally. The figurative costs is these complicated IDEs
typically have a more substantial learning curve and can often have steep
hardware requirements.

& Bciper Fle Bt Soes Mefarior Naipae Seamh Pject Re Windee Help

(Y]

W e Qe Qs o TR RS F A T

T sty

L~ L sl Ragslalodalalmlslnl~lslnlal alalalafal4

Figure 3.25 A full IDE [Eclipse]

Figure 3.25 Full Alternative Text

Cloud-based environments. One of the fastest growing approaches to
developing web applications is to do one's development, testing, and hosting
all within an online environment. The key advantage of such an approach is
that you don't have to worry about installing, supporting, and synchronizing
different web development tools, since it is all done for you by the online
environment. As well, using such online environments means that you don't
really care what device you have; as long as you have an Internet connection,
you can do your coding. Of course, that's also the key disadvantage. Since
you need an Internet connection, you can't code while on the plane or in a
forest (though these environments sometimes provide a mechanism for
offline usage). At the time of writing, CodeAnywhere (see Figure 3.26) and
Cloud9 are two popular sites providing a complete IDE for web development.

Q) Dot - Cocdeanywhere X) 8 lEy_*I,\—'le_ﬁ

€ G | @ Codearynhere tips/ /codeamywhare com tH|E ¢ 0@ :

Figure 3.26 Cloud-Based
Environment [CodeAnywhere]

Figure 3.26 Full Alternative Text

Code playgrounds. Our final approach to web development tools also makes
use of online environments. Code playgrounds are not about constructing
complete sites. Instead, they provide a way to experiment, demonstrate, and
share smaller snippets of code. Some of the most popular include CodePen
(see Figure 3.27), JSFiddle, and CSS Deck. These environments are
especially valuable for students as a way to construct online portfolios and to
show off their skills to prospective clients and employers. As mentioned in
this book's Preface, many of the HTML, CSS, and JavaScript code examples
in the early chapters of this book are available on CodePen.

@}su:a" Trantparensy X l'\..,—.-

& C K B hups I=‘:|-.-ilell1 0/ia - ?; .‘ & |

0=
i €D Panels and Transparency # o | o CrangeView ﬁ
Rancly Connolly

¢ HTML d d Tdy X

vor wcadidunt ut labore et dolore magna aliqus, Ut enm ad mimins veniam, quis nourod exercitation
jor in reprebendent m volsprate velit esse cillum dolore en fugiar nulla pariame, Excepreur snt
ity 3d st 1abomum

X Loem ipiumm dolor ut amet, consectetur adiprcing elit, sed do e
ul bors nusi ut aliquip ex ea commods consequat, D
acchecar cupudanat pon prosdent, sunt m culpa qui officw desemar moll an

Lorem ipsum dolor srt amet. consectetor adipiscing elit, sed do enusmaod tempor meiduhmi ut labore et dolore magna ahqua. Ut emm ad mimm vemam, quis nostrud exercitabion

ullamco labons ms1 ut aliquip ex ca commodo consaquat, [hus aute wure dolor i reprehendent m voluptate vebt esse aillum dolore cu ﬁ.erlll nuilla panatur. Exceptour smt
occaecal cupidatat non prosdent, sunt m culpa qui offic deserunt mollst ansm id est laborum

X Logem ipsvm dolor sit amet, convectenar adipicing elit, sad do ensemod vempor mcididunt ur labore &t dolore magna aliqua. Ur snim ad minins vemian, quis nostrod exercitation

Figure 3.27 Code Playground
|[CodePen]

Figure 3.27 Full Alternative Text

We encourage all of our readers to experiment with different tools and
approaches. As mentioned at the beginning of this section, you will likely
find that one tool is rarely sufficient for web development. Furthermore, one
of the constants of web development has been the evolution and extinction of
web tools. Ten years ago, students might have learned Microsoft FrontPage,

Netscape Composer, Adobe GoLive, or Apple iWeb in their web
development courses, yet today all of these programs are discontinued and
are not really used anymore. The moral of the story? Be prepared to learn
new tools now ... and be prepared to learn more new ones in the future!

3.7 Chapter Summary

This chapter has provided a relatively fast-paced overview of the significant
features of HTML5. Besides covering the details of most of the important
HTML elements, an additional focus throughout the chapter has been on the
importance of maintaining proper semantic structure when creating an HTML
document. To that end, the chapter also covered the new semantic elements
defined in HTML5. The next chapter will shift the focus to the visual display
of HTML elements and provide the reader with a first introduction to CSS.

3.7.1 Key Terms

e absolute referencing

e accessibility

® ancestors

* body

e (Cascading Style Sheets (CSS)

e character entity

e description lists

e descendants
e directory
e document outline

e Document Object Model

e Document Type Definition

empty element

folder
head

HTML attribute

HTML validators

inline HTML elements

maintainability

marku

markup language

ordered lists

pathname

olyfill

quirks mode

Recommendations

relative referencing

root element

root reference

schemas

search engine optimization
semantic HTML

e specifications

e standards mode

e syndication

e syntax errors

® (ags

e unordered lists

e UTF-8
e WHATWG
e W3C

e XHTML 1.0 Strict

e XHTML 1.0 Transitional

3.7.2 Review Questions

1. 1. What is the difference between XHTML and HTML5?

2. 2. Why was the XHTML 2.0 standard eventually abandoned?
3. 3. What role do HTML validators play in web development?
4. 4. What are the main syntax rules for XML?

5. 5. What are HTML elements? What are HTML attributes?

6. 6. What is semantic markup? Why is it important?

7. 7. Why is removing presentation-oriented markup from one's HTML
documents considered to be a best practice?

10.

11.

12.

13.

14.

8. What is the difference between standards mode and quirks mode?
What role does the doctype play with these modes?

9. What is the difference between the <p> and the <div> element? In
what contexts should one use the one over the other?

10. Describe the difference between a relative and an absolute reference.
When should each be used?

11. What are the advantages of using the new HTML5 semantic
elements? Disadvantages?

12. Are you allowed to use more than one <heading> element in a web
page? Why or why not?

13. How are the <main>, <section>, and <article> elements related?
Be sure to describe the semantic role for each of these elements.

14. How does the <figure> element differ from the element? In
what situations does it make sense to use or not use <figure>?

3.7.3 Hands-On Practice

Hands-on practice projects are present in many chapters throughout this
textbook and relate the content matter back to a few overarching examples:
an art store, a travel website, and a customer relationship management
(CRM) portal for a book representative. These projects come with images,
databases, and other files, and are included with your purchase of this
textbook.

Project 1: Share Your Travel
Photos

Difficulty Level: Beginner

Overview

This project is the first step in the creation of a travel photo-sharing website.
The page you are given is augmented by this project so that it appears similar
to that shown in Figure 3.28 .

images/1ogo.png

Links to <h2> headings

Each of these should be
links to larger version.
Also, don't forget alt
and title attributes.

Use the same structure
as the other review.,

These links can
be to "#*

S

4{

4{

ust I

UL L [N - r—_

| = = @ 9 chapterd3-peectd” Bl

0
Share Your Travels

« Descripcien
+ Baliwed Pioioy
» Riviewy

New York - Central Park

Description
Prot by Randy Connally
T plttes of Coatvacrvanty Poesd i Cerral Parky i N Yok Clity was toes om Oveeiber 22, X014 with 5 Cansa BOS %00 eamers

Compervaiory Fond in Cradred Prk

e 4 @O #————————— These icons are in the

images folder

Related Photos

F. 1 | Trf
-= /Iclllll II.
Reviews

S Ricards on 20160625

Easy on the HDR buddy

B S am 200611418

[leve Cemeral Park,

o | Bawwss | Soaecl
Copyripht © 2007 Share Fowr Fravely

Figure 3.28 Completed Project

1

Figure 3.28 Full Alternative Text

« Hands-on Exercises

Project 3.1

Instructions

1. Open chapter03-projectO1.html in the editor of your choice, so you can
start making changes.

2. Open a browser and direct it to the same file (or double click the file in
most operating systems). You should see a page similar to Figure 3.10 .

3. Start by adding an image to the <h1> heading. The image is in the
images folder.

4. In the unordered list, add links to the <h2> headings. This will require
referencing in the href the id attribute of those headings.

5. Add a new section for the related photos. In this new section, add three
images from the ones provided in the images folder. Use the small
images related-squarel.jpg, related-square2.jpg, and related-square3.jpg,
but link to the large images with almost the same names.

6. Add an additional review.

Test

1. Firstly, test your page by seeing if it looks like the one in Figure 3.28 .

2. Now check that the links at the top of the page work correctly and that
clicking on the related images brings up the larger versions.

3. Validate the page by either using a built-in tool in your editor, or pasting

the HTML into http://validator.w3.org or https://html5.validator.nu and
ensure that it displays a message that indicates it contains no errors.

Project 2: Customer Relations
Management Admin

Difficulty Level: Intermediate

Overview

This project is the first step in the creation of a CRM (Customer Relations
Management) website. In this project, you will be augmenting the provided
page to use semantic HTMLS5 tags.

-« Hands-on Exercises

Project 3.2

Instructions

1. Open chapter03-project02.html in the editor of your choice, and in a
browser. In this project, the look of your page will remain unchanged
from how it looks at the start as shown in Figure 3.29 .

http://validator.w3.org

< C @ 7o o I
CRM Admin

navigation —{ = : cim

Employee Profile

Photo

section — ﬁ

lack Samith

Personal Data

Add
EECtilDr'l — - 1 Moot Win
Bsduond
Region
WA
Pheese
1 (42
Customers
section — | Tt
Michel Faacaul

niversiry of Prms

Mew Invemiory

|
X

I o o Processng by Kroenke. foser

aside —| | Ao

footer —|

Figure 3.29 Completed
Project 2

Figure 3.29 Full Alternative Text

2. Reflect on why adding semantic markup is a worthwhile endeavor, even
if the final, rendered page looks identical.

3. Replace and supplement generic HTML tags like <div> with semantic
tags like <article>, <nav>, or <footer> (for example). Some parts
make sense to wrap inside a tag such as <section> or <figure>. Figure
3.29 indicates which semantic tags you should use.

Test

1. Firstly, test your page side by side with the original in a browser to make
sure it looks the same.

2. Validate the page by either using a built-in tool in your editor, or pasting
the HTML into http://validator.w3.org or https://html5.validator.nu and
ensure that it displays a message that indicates it contains no errors.

Project 3: Art Store
Difficulty Level: Intermediate

Overview

This project is the first step in the creation of an art store website. Unlike the
previous exercises, your task is to create an HTML page from scratch based
on the image in Figure 3.30 .

http://validator.w3.org

B OR[Ny S b e
= = O O chasterdl-prajectOl. b

Al links can just LY " AR e Note the accent on the
be to "#* Hoome:) Aiies | Amworis | About s | Search e character in Riviére.
Mademaoiselle Caroline Riviére

by et Akpene- Domiskes kg

Link to larger version. ’ ' E Be sure to use appropriate

Also, don't forget alt ——» | semantic elements (figure,
and title attributes. header, main, etc)

T piaitiis of b lackeastonse |be Capoline Rivibe wid pilissd i6 1R06 by e French Neoclmasal i beis Anpese Domlijue |
legres, nead ouday hangs ia the Lowre. B s the dhisd of theee povtesins of the Rividse fumily the st pobeeed chas year.

Dhaic: 8

Mindiwn: O cm Cosas
Db 100 5 70 om
Home: Mushe dis Loarvrs, Paris

Both the image and

2 W a0 Can T At 10 Prciies
text are ||nk5 Add v Cany Add 5o Favoriics

Laarwe thils
Mokt Semah Wi il

ks i e of ey Evarioen!
e | At Workd | Antlaes | Aloiar Ui

Cupyrighe © JIT My Sawsple A Srore

Figure 3.30 Completed Project
3

Figure 3.30 Full Alternative Text

% Hands-on Exercises

Project 3.3

Instructions

1. Define your own chapter02-project03.html file in the editor of your
choice, and open it in a browser.

2. Add markup and content, making best guesses as to what HTML
markup to use.

3. Remember to try and get in the habit of using semantic markup, since it
adds meaning and has no visual impact.

Test

1. Display your page in a browser, and determine if it looks like Figure
3.30 .

2. Validate the page by either using a built-in tool in your editor, or pasting
the HTML into http://validator.w3.org or https://html5.validator.nu and
ensure that it displays a message that indicates it contains no errors.

http://validator.w3.org

4 Introduction to CSS

Chapter Objectives

In this chapter you will learn ...

The rationale for CSS

The syntax of CSS

Where CSS styles can be located

The different types of CSS selectors

What the CSS cascade is and how it works
The CSS box model

CSS text styling

This chapter provides a substantial introduction to CSS (Cascading Style
Sheets), the principal mechanism for web authors to modify the visual
presentation of their web pages. Just as with HTML, there are many books
devoted to CSS.1-3 While simple styling is quite straightforward, more
complicated CSS tasks such as layout and positioning can be quite
complicated. Since this book covers CSS in just two chapters, it cannot
possibly cover all of it. Instead, our intent in this chapter is to cover the
foundations necessary for working with contemporary CSS; Chapter 7 will
cover CSS layout and positioning.

4.1 What Is CSS?

At various places in the previous chapter on HTML, it was mentioned that in
current web development best practices HTML should not describe the
formatting or presentation of documents. Instead that presentation task is best
performed using Cascading Style Sheets (CSS).

CSS is a W3C standard for describing the appearance of HTML elements.
Another common way to describe CSS's function is to say that CSS is used to
define the presentation of HTML documents. With CSS, we can assign font
properties, colors, sizes, borders, background images, and even position
elements on the page.

CSS can be added directly to any HTML element (via the style attribute),
within the <head> element, or, most commonly, in a separate text file that
contains only CSS.

4.1.1 Benefits of CSS

Before digging into the syntax of CSS, we should say a few words about why
using CSS is a better way of describing appearances than HTML alone. The
benefits of CSS include the following:

e Improved control over formatting. The degree of formatting control in
CSS is significantly better than that provided in HTML. CSS gives web
authors fine-grained control over the appearance of their web content.

e Improved site maintainability. Websites become significantly more
maintainable because all formatting can be centralized into one CSS file,
or a small handful of them. This allows you to make site-wide visual
modifications by changing a single file.

e Improved accessibility. CSS-driven sites are more accessible. By
keeping presentation out of the HTML, screen readers, and other

accessibility tools work better, thereby providing a significantly
enriched experience for those reliant on accessibility tools.

e Improved page-download speed. A site built using a centralized set of
CSS files for all presentation will also be quicker to download because
each individual HTML file will contain less style information and
markup, and thus be smaller.

e Improved output flexibility. CSS can be used to adopt a page for
different output media. This approach to CSS page design is often
referred to as responsive design. Figure 4.1 illustrates a site that
responds to different browser and window sizes.

Figure 4.1 CSS-based
responsive design (site by
Peerapong Pulpipatnan on
ThemeF orest.net)

Figure 4.1 Full Alternative Text

http://ThemeForest.net

4.1.2 CSS Versions

Just like with the previous chapter, we should say a few words about the
history of CSS. Style sheets as a way to visually format markup predate the
web. In the early 1990s, a variety of different style sheet standards were
proposed, including JavaScript style sheets, which was proposed by Netscape
in 1996. Netscape's proposal was one that required the use of JavaScript
programming to perform style changes. Thankfully for nonprogrammers
everywhere, the W3C decided to adopt CSS, and by the end of 1996 the CSS
Level 1 Recommendation was published. A year later, the CSS Level 2
Recommendation (also more succinctly labeled simply as CSS2) was
published.4

Even though work began over a decade ago, an updated version of the Level
2 Recommendation, CSS2.1, did not become an official W3C
Recommendation until June 2011. And to complicate matters even more, all
through the last decade (and to the present day as well), during the same time
the CSS2.1 standard was being worked on, a different group at the W3C was
working on a CSS3 draft. To make CSS3 more manageable for both browser
manufacturers and web designers, the W3C has subdivided it into a variety of
different CSS3 modules. So far the following CSS3 modules have made it to
official W3C Recommendations: CSS Selectors, CSS Namespaces, CSS
Media Queries, CSS Color, and CSS Style Attributes.

4.1.3 Browser Adoption

Perhaps the most important thing to keep in mind with CSS is that the
different browsers have not always kept up to the W3C. While Microsoft's
Internet Explorer was an early champion of CSS (its IE3, released in 1996,
was the first major browser to support CSS, and its IE5 for the Macintosh
was the first browser to reach almost 100% CSS1 support in 2000), its later
versions (especially IE5, IE6, and IE7) for Windows had uneven support for
certain parts of CSS2. However, all browsers have not implemented parts of
the CSS2 Recommendation.

For this reason, CSS has a reputation for being a somewhat frustrating
language. Based on over a decade of experience teaching university students
CSS, this reputation is well deserved. Since CSS was designed to be a styling
language, text styling is quite easy. However, CSS was not really designed to
be a layout language, so authors often find it tricky dealing with floating
elements, relative positions, inconsistent height handling, overlapping
margins, and nonintuitive naming (we're looking at you, relative and
limportant). When one adds in the uneven CSS 2.1 support (prior to IE8 and
Firefox 2) in browsers for CSS2.1, it becomes quite clear why many software
developers developed a certain fear and loathing of CSS.

4.2 CSS Syntax

A CSS document consists of one or more style rules. A rule consists of a
selector that identifies the HTML element or elements that will be affected,
followed by a series of property:value pairs (each pair is also called a

declaration), as shown in Figure 4.2 .

declaration

selector { property: value; property2: value2; } F—rum

declaration block

— syntax

selector

ks

em { color: red; }

i i

property value

p {
margin: 5px 0 10px 0;
font-weight: bold;
font-family: Arial, Helvetica, sans-serif;

— examples

Figure 4.2 CSS syntax

Figure 4.2 Full Alternative Text

% Hands-on Exercises I.ab 4

Exercise

Adding Styles

The series of declarations is also called the declaration block. As one can see
in the illustration, a declaration block can be together on a single line, or
spread across multiple lines. The browser ignores white space (i.e., spaces,
tabs, and returns) between your CSS rules so you can format the CSS
however you want. Notice that each declaration is terminated with a
semicolon. The semicolon for the last declaration in a block is in fact
optional. However, it is sensible practice to also terminate the last declaration
with a semicolon as well; that way, if you add rules to the end later, you will
reduce the chance of introducing a rather subtle and hard-to-discover bug.

4.2.1 Selectors

Every CSS rule begins with a selector. The selector identifies which element
or elements in the HTML document will be affected by the declarations in the
rule. Another way of thinking of selectors is that they are a pattern that is
used by the browser to select the HTML elements that will receive the style.
As you will see later in this chapter, there are a variety of ways to write
selectors.

4.2.2 Properties

Each individual CSS declaration must contain a property. These property
names are predefined by the CSS standard. The CSS2.1 recommendation
defines over a hundred different property names, so some type of reference
guide, whether in a book, online, or within your web development software,
can be helpful.5 This chapter and the next one on CSS (Chapter 7) will only
be able to cover most of the common CSS properties. Table 4.1 lists many of
the most commonly used CSS properties. Properties marked with an asterisk
contain multiple subproperties not listed here (e.g., border-top, border-top-

color, border-top-width, etc).

Table 4.1 Common CSS
Properties

Property Type Property

font

font-family

font-size
Fonts

font-style

font-weight

@font-face

letter-spacing

line-height
Text text-align

text-decoration*

text-indent

background
background-color
background-image
background-position

Color and background
background-repeat

Borders

Spacing

Sizing

box-shadow
color

opacity

border*

border-color

border-width

border-style

border-top, border-left, ..*
border-image*

border-radius

padding

padding-bottom, padding-left, ..

margin

margin-bottom, margin-left,

height
max-height
max-width
min-height
min-width

width

bottom, left, right, top

clear

display

float
Layout overflow
position
visibility

z-1index

list-style*
Lists list-style-image

list-style-type

animation*

filter
Effects perspective

transform*

transition*

4.2.3 Values

Each CSS declaration also contains a value for a property. The unit of any
given value is dependent upon the property. Some property values are from a
predefined list of keywords. Others are values such as length measurements,
percentages, numbers without units, color values, and URLs.

Colors would seem at first glance to be the clearest of these units. But as we
will see in more detail in Chapter 6, color can be a complicated thing to
describe. CSS supports a variety of different ways of describing color; Table
4.2 lists the different ways you can describe a color value in CSS.

Table 4.2 Color Values

Method Description

Use one of 17 standard
color names. CSS3 has
140 standard names.

Name

Uses three different
numbers between 0 and
255 to describe the red,
green, and blue values
of the color.
Uses a six-digit
hexadecimal number to
describe the red, green,
and blue value of the
color; each of the three
Hexadecimal RGB values is between
0 and FF (which is 255
in decimal). Notice that

RGB

the hexadecimal number
is preceded by a hash or

pound symbol (#).

This defines a partially
transparent background
color. The “a” stands
for “alpha,” which is a
term used to identify a
transparency that is a

RGBa

Example

color: red;

color: hotpink; /* CSS3
only */

color: rgb(255,0,0);

color:
rgb(255,105,180);

color: #FF0O000;

color: #FF69B4;

color:
rgha(255,0,0,0.5);

value between 0.0 (fully
transparent) and 1.0

(fully opaque).

Allows you to specify a

color using Hue color:

Saturation and Light hs1(®,100%, 100%);

HSL values. This is available .41q:

only in CSS3. HSLA is hsla(330,59%,100%,0.5);
also available as well.

Just as there are multiple ways of specifying color in CSS, so too there are
multiple ways of specifying a unit of measurement. As we will see later in
Section 4.7, these units can sometimes be complicated to work with. When
working with print design, we generally make use of straightforward absolute
units such as inches or centimeters and picas or points. However, because
different devices have differing physical sizes as well as different pixel
resolutions and because the user is able to change the browser size or its
zoom mode, these absolute units don't always make sense with web element
measures.

Table 4.3 lists the different units of measure in CSS. Some of these are
relative units, in that they are based on the value of something else, such as
the size of a parent element. Others are absolute units, in that they have a
real-world size. Unless you are defining a style sheet for printing, it is
recommended you avoid using absolute units. Pixels are perhaps the one
popular exception (though, as we shall see later, there are also good reasons
for avoiding the pixel unit). In general, most of the CSS that you will see uses
either px, em, or % as a measure unit.

Table 4.3 Units of Measure
Values

Unit Description Type

PX

em

%

ex

ch

rem

vh

in
cm
mm

pt

Relative
Pixel. In CSS2 this is a relative measure, whilein ~ (CSS2)
CSS3 it is absolute (1/96 of an inch).

Absolute
(CSS3)
Equal to the computed value of the font-size
property of the element on which it is used. When Relative

used for font sizes, the em unit is in relation to the
font size of the parent.

A measure that is always relative to another value.

The precise meaning of % varies depending upon Relative

the property in which it is being used.

A rarely used relative measure that expresses size in :
: . : Relative

relation to the x-height of an element's font.

Another rarely used relative measure; this one Relative

expresses size in relation to the width of the zero (CSS3

(“0”) character of an element's font. only)

Stands for root em, which is the font size of the root Relative
element. Unlike em, which may be different for each

element, the rem is constant throughout the (CSS3
document. only)
Stands for viewport width and viewport height. Relative
Both are percentage values (between 6 and 100) of

the viewport (browser window). This allows an (CSS3

item to change size when the viewport is resized. ~ only)

Inches Absolute
Centimeters Absolute
Millimeters Absolute
Points (equal to 1/72 of an inch) Absolute

Pc Pica (equal to 1/6 of an inch) Absolute

L“yNote

It is often helpful to add comments to your style sheets. Comments take the
form:

/* comment goes here */

Real-world CSS files can quickly become quite long and complicated. It is a
common practice to locate style rules that are related together, and then
indicate that they are related via a comment. For instance:

/* main navigation */
nav#main { .. }
nav#main ul { .. }
nav#main ul 1i { .. }
/* header */

header { .. }

hi { ..}

Comments can also be a helpful way to temporarily hide any number of rules,
which can make debugging your CSS just a tiny bit less tedious.

4.3 Location of Styles

As mentioned earlier, CSS style rules can be located in three different
locations. These three are not mutually exclusive, in that you could place
your style rules in all three. In practice, however, web authors tend to place
all of their style definitions in one (or more) external style sheet files.

4.3.1 Inline Styles

Inline styles are style rules placed within an HTML element via the style
attribute, as shown in Listing 4.1. An inline style only affects the element it is
defined within and overrides any other style definitions for properties used in
the inline style (more about this below in Section 4.5.2). Notice that a
selector is not necessary with inline styles and that semicolons are only
required for separating multiple rules.

Using inline styles is generally discouraged since they increase bandwidth
and decrease maintainability (because presentation and content are
intermixed and because it can be difficult to make consistent inline style
changes across multiple files). Inline styles can, however, be handy for
quickly testing out a style change.

Listing 4.1 Internal styles example

<h1>Share Your Travels</h1>
<h2 style="font-size: 24pt”>Description</h2>

<h2 style=“font-size: 24pt; font-weight: bold;"”>Reviews</h2>

4.3.2 Embedded Style Sheet

Embedded style sheets (also called internal styles) are style rules placed
within the <style> element (inside the <head> element of an HTML
document), as shown in Listing 4.2. While better than inline styles, using
embedded styles is also by and large discouraged. Since each HTML
document has its own <style> element, it is more difficult to consistently
style multiple documents when using embedded styles. Just as with inline
styles, embedded styles can, however, be helpful when quickly testing out a
style that is used in multiple places within a single HTML document. We
sometimes use embedded styles in the book or in lab materials for that
reason.

%« Hands-on Exercises I.ab 4
Exercise

Embedded Style Sheets

Listing 4.2 Embedded styles

example
<head>
<meta charset=“utf-8">
<title>Share Your Travels -- New York - Central Park</title>
<style>
hi { font-size: 24pt,; }
h2 {

font-size: 18pt;
font-weight: bold;
}
</style>
</head>
<body>
<hi1>Share Your Travels</hi1>
<h2>New York - Central Park</h2>

4.3.3 External Style Sheet

External style sheets are style rules placed within a external text file with the
.css extension. This is by far the most common place to locate style rules
because it provides the best maintainability. When you make a change to an
external style sheet, all HTML documents that reference that style sheet will
automatically use the updated version. The browser is able to cache the
external style sheet, which can improve the performance of the site as well.

% Hands-on Exercises I.ab 4
Exercise

External Style Sheets

To reference an external style sheet, you must use a <1ink> element (within
the <head> element), as shown in Listing 4.3. You can link to several style
sheets at a time; each linked style sheet will require its own <1link> element.

Listing 4.3 Referencing an external
style sheet

<head>
<meta charset=“utf-8">
<title>Share Your Travels -- New York - Central Park</title>
<link rel="stylesheet” href=“styles.css” />

</head>

w=rNote

There are in fact three different types of style sheet:

1. Author-created style sheets (what you are learning in this chapter)

2. User style sheets

3. Browser style sheets

User style sheets allow the individual user to tell the browser to display pages
using that individual's own custom style sheet. This option can usually be
found in a browser's accessibility options.

The browser style sheet defines the default styles the browser uses for each
HTML element. Some browsers allow you to view this stylesheet. For
instance, in Firefox, you can view this default browser style sheet via the
following URL: resource://gre-resources/forms.css. The browser stylesheet
for WebKit browsers such as Chrome and Safari can be found (for now) at:
http://trac.webkit.org/browser/trunk/Source/WebCore/css/html.css.

http://trac.webkit.org/browser/trunk/Source/WebCore/css/html.css

4.4 Selectors

As teachers, we often need to be able to relay a message or instruction to
either individual students or groups of students in our classrooms. In spoken
language, we have a variety of different approaches we can use. We can
identify those students by saying things like: “all of you talking in the last
row,” or “all of you sitting in an aisle seat,” or “all of you whose name begins
with ‘C’, ” or “all first-year students,” or “John Smith.” Each of these
statements identifies or selects a different (but possibly overlapping) set of
students. Once we have used our student selector, we can then provide some
type of message or instruction, such as “talk more quietly,” “hand in your
exams,” or “stop texting while I am speaking.”

«4 Hands-on Exercises I.ab 4
Exercise

Element, Class, and Id Selectors

“sNote

Figure 3.4 back in Chapter 3 illustrated some of the familial terminologies
(such as descendants, ancestors, siblings, etc.) that are used to describe the
relationships between elements in an HTML document. The Document
Object Model (DOM) is how a browser represents an HTML page internally.
This DOM is akin to a tree representing the overall hierarchical structure of
the document.

As you progress through these chapters on CSS, you will at times have to
think about the elements in your HTML document in terms of their position
within the hierarchy. Figure 4.3 illustrates a sample document structure as a

hierarchical tree.

<htm1>
f""xa;ﬁ-q&h’"'
LA Rﬁ““'ﬂ
‘:hﬁ-adb f-:body‘;
/\\ -”ff //\ ——-__________
<meta> <title> <hi> <h2? <p> <h3> <d1ub <div> p>
<a> <p> <p> <p> <p> <small>

<time> <time>

Figure 4.3 Document
outline/tree

Figure 4.3 Full Alternative Text

In a similar way, when defining CSS rules, you will need to first use a
selector to tell the browser which elements will be affected by the property
values. CSS selectors allow you to select individual or multiple HTML
elements.

The topic of selectors has become more complicated than it was when we
started teaching CSS in the late 1990s. There are now a variety of new
selectors that are supported by most modern browsers. Before we get to
those, let us look at the three basic selector types that have been around since
the earliest CSS2 specification.

4.4.1 Element Selectors

Element selectors select all instances of a given HTML element. The example

CSS rules in Figure 4.2 illustrate two element selectors. You can select all
elements by using the universal element selector, which is the * (asterisk)
character.

You can select a group of elements by separating the different element names
with commas. This is a sensible way to reduce the size and complexity of
your CSS files, by combining multiple identical rules into a single rule. An
example grouped selector is shown in Listing 4.4, along with its equivalent as
three separate rules.

4.4.2 Class Selectors

A class selector allows you to simultaneously target different HTML
elements regardless of their position in the document tree. If a series of
HTML elements have been labeled with the same class attribute value, then
you can target them for styling by using a class selector, which takes the
form: period (.) followed by the class name.

Listing 4.5 illustrates an example of styling using a class selector. The result
in the browser is shown in Figure 4.4 .

3 C O

A

Reviews M 1
font-style: italic;
color: red:

A

Easy on the HDE buddy

}

A

By Ssvems aig 0BT 8

I love Central Park

Figure 4.4 Class selector
example in browser

Figure 4.4 Full Alternative Text

Listing 4.4 Sample grouped selector

/* commas allow you to group selectors */
p, div, aside {
margin: 0O;
padding: 0O;
}
/* the above single grouped selector is equivalent to the
following: */

p{
margin: O,
padding: 0O;

}

div {
margin: O;
padding: 0O;

}

aside {
margin: 0O;
padding: 0O;

}

e23Pro Tip

Grouped selectors are often used as a way to quickly reset or remove browser
defaults. The goal of doing so is to reduce browser inconsistencies with
things such as margins, line heights, and font sizes. These reset styles can be
placed in their own CSS file (perhaps called reset.css) and linked to the page
before any other external style sheets. An example of a simplified reset is
shown below:

html, body, div, span, hl, h2, h3, h4, h5, h6, p {
margin: 0O;
padding: 0;
border: 0;
font-size: 100%;
vertical-align: baseline;

An alternative to resetting/removing browser defaults is to normalize them:
that is, ensure all browsers use the same default settings for all elements.
Many popular sites make use of normalize.css which can be found at https://
github.com/necolas/normalize.css

Listing 4.5 Class selector example

<head>
<title>Share Your Travels </title>
<style>
first {
font-style: italic;
color: red;
}
</style>
</head>
<body>
<hl class=“first”>Reviews</h1>
<div>

<p class=“first”>By Ricardo on <time>2016-05-23</time></p>
<p>Easy on the HDR buddy.</p>

</div>

<hr/>

<div>
<p class="“first”>By Susan on <time>2016-11-18</time></p>
<p>I love Central Park.</p>
</div>
<hr/>
</body>

4.4.3 1d Selectors

An id selector allows you to target a specific element by its id attribute
regardless of its type or position. If an HTML element has been labeled with
an id attribute, then you can target it for styling by using an id selector,
which takes the form: pound/hash (#) followed by the id name.

Listing 4.6 illustrates an example of styling using an id selector. The result in

https://github.com/necolas/normalize.css

the browser is shown in Figure 4.5 .

¢ @ O Listingd-06 bl B

Reviews
B ey | #latestComment {
_ s F font-style: italic;
Casy on fae HUR budd) color: red;
s }
By Susan on 2016-11-18

I love Central Park

Figure 4.5 Id selector example
in browser

Figure 4.5 Full Alternative Text

Listing 4.6 Id selector example

<head>
<meta charset=“utf-8">
<title>Share Your Travels -- New York - Central Park</title>
<style>

#latestComment {
font-style: italic;
color: red;
}
</style>
</head>
<body>
<h1>Reviews</h1>
<div id="latestComment”>
<p>By Ricardo on <time>2016-05-23</time></p>
<p>Easy on the HDR buddy.</p>
</div>
<hr/>
<div>

<p>By Susan on <time>2016-11-18</time></p>
<p>I love Central Park.</p>
</div>
<hr/>
</body>

w=rNote

Id selectors should only be used when referencing a single HTML element
since an id attribute can only be assigned to a single HTML element. Class
selectors should be used when (potentially) referencing several related
elements.

It is worth noting, however, that the browser is quite forgiving when it comes
to id selectors. While you should only use a given id attribute once in the
markup, the browser is willing to let you use it multiple times!

4.4.4 Attribute Selectors

An attribute selector provides a way to select HTML elements either by the
presence of an element attribute or by the value of an attribute. This can be a
very powerful technique, but because of uneven support by some of the
browsers in the past, not all web authors have used them.

%<« Hands-on Exercises I.ab 4
Exercise

Attribute Selectors

Attribute selectors can be a very helpful technique in the styling of hyperlinks
and images. For instance, perhaps we want to make it more obvious to the
user when a pop-up tooltip is available for a link or image. We can do this by

using the following attribute selector:

[title] { .. }

This will match any element in the document that has a title attribute. We
can see this at work in Listing 4.7, with the results in the browser shown in

Figure 4.6 .

[title] {
cursor: help;
padding-bottom: 3px;

h J

border-bottom: 2px dotted blue, |
text-decoration: none; =
} — =
i
Bl ==
Canada

Canada 15 a North Amencan country consssimg of ten provinces and three
territories. Located in the northem part of the contnent. it extends from the Atlantis
to the Pacific and northward into the Arctic Ocean. Canada i the world's second-
Largest coumtry by total ares, and its conumon bosder with the Undted States is the
world's longest land boeder.

Figure 4.6 Attribute selector
example in browser

Figure 4.6 Full Alternative Text

Listing 4.7 Attribute selector

example

<head>
<meta charset="utf-8">
<title>Share Your Travels</title>
<style>
[title] {
cursor: help;
padding-bottom: 3px;
border-bottom: 2px dotted blue;
text-decoration: none;
}
</style>
</head>
<body>
<div>

<h2><a href="countries.php?id=CA” title="see posts from Can
Canada
</h2>
<p>Canada is a North American country consisting of .. </p>
<div>
<img src="images/square/6114907897.jpg”
title=“At top of Sulphur Mountain” />
<img src=“images/square/6592317633.jpg”
title=“Grace Presbyterian Church” />
<img src="images/square/6592914823.jpg”
title=“Calgary Downtown” />
</div>
</div>
</body>

Table 4.4 summarizes some of the most common ways one can construct
attribute selectors in CSS3.

Table 4.4 Attribute Selectors

Selector Matches Example

[title]

[l A specific attribute. Matches any element with

a title attribute

[~=

[*=]

[*=]

[$=]

A specific attribute with a
specific value.

A specific attribute whose
value matches at least one of
the words in a space-
delimited list of words.

A specific attribute whose

value begins with a specified

value.

A specific attribute whose
value contains a substring.

A specific attribute whose
value ends with a specified
value.

a[title="posts from
this country”]

Matches any <a> element
whose title attribute is
exactly “posts from this
country*

[title~="Countries”]

Matches any title
attribute that contains the
word “Countries®

alhrefA=“mailto”]

Matches any <a> element
whose href attribute
begins with “mailto®

img[src*="flag”]

Matches any element
whose src attribute
contains somewhere within
it the text “flag“

alhref$=".pdf"]

Matches any <a> element
whose href attribute ends
with the text “.pdf“

4.4.5 Pseudo-Element and Pseudo-
Class Selectors

A pseudo-element selector is a way to select something that does not exist
explicitly as an element in the HTML document tree but which is still a
recognizable selectable object. For instance, you can select the first line or
first letter of any HTML element using a pseudo-element selector. A pseudo-
class selector does apply to an HTML element, but targets either a particular
state or, in CSS3, a variety of family relationships. Table 4.5 lists some of the
more common pseudo-class and pseudo-element selectors.

Table 4.5 Common Pseudo-
Class and Pseudo-Element
Selectors

Selector Type Description

a:link Ef;;do_ Selects links that have not been visited.

a:visited Ef:sl;do_ Selects links that have been visited.

 focus pseudo- Selects elements (such as text boxes or list
class boxes) that have the input focus.

-hover pseudo- Selects elements that the mouse pointer is
class currently above.

d Selects an element that is being activated by

:active pls. U0 the user. A typical example is a link that is
s being clicked.
pseudo- Selects a form element that is currently

: checked class checked. A typical example might be a radio

button or a check box.

Selects an element that is the first child of its
parent. A common use is to provide different
styling to the first element in a list.

:first- pseudo-
child class

:first- pseudo- Selects the first letter of an element. Useful for
letter eclement adding drop-caps to a paragraph.
:first- pseudo-

. Selects the first line of an element.
line element

«« Hands-on Exercises I.ab 4
Exercise

Pseudo-selectors

The most common use of this type of selectors is for targeting link states. By
default, the browser displays link text blue and visited text links purple.
Listing 4.8 illustrates the use of pseudo-class selectors to style not only the
visited and unvisited link colors, but also the hover color, which is the color
of the link when the mouse is over the link. Do be aware that this state does
not occur on touch screen devices. Note the syntax of pseudo-class selectors:
the colon (:) followed by the pseudo-class selector name. Do be aware that a
space is not allowed after the colon.

Believe it or not, the order of these pseudo-class elements is important. The
:1ink and :visited pseudo-classes should appear before the others. Some
developers use a mnemonic to help them remember the order. My favorite is
“Lord Vader, Former Handle Anakin” for Link, Visited, Focus, Hover,
Active.

Listing 4.8 Styling a link using
pseudo-class selectors

<head>

<title>Share Your Travels</title>

<style>
a:link

{

text-decoration: underline;
color: blue;

}

a:visited {
text-decoration: underline;
color: purple;

3

a:hover {
text-decoration: none;
font-weight: bold;

3

atactive {
background-color: yellow;

}
</style>
</head>
<body>
<p>Links
links
<nav>

<a
<a
<a

</nav>
</body>

are an important part of any web page. To learn mor
visit the W3C website.</p>

href=“#">Canada</1i>
href="#">Germany</1i>
href=“#">United States</1li>

L“yNote

Notice the use of the “#” url used in the <a> elements in Listing 4.8. This is a
common practice used by developers when they are first testing a design. The
designer might know that there is a link somewhere, but the precise URL
might still be unknown. In such a case, using the “#” url is helpful: the
browser will recognize them as links, but nothing will happen when they are
clicked. Later, using the source code editor's search functionality will make it
easy to find links that need to be finalized.

4.4.6 Contextual Selectors

A contextual selector (in CSS3 also called combinators) allows you to select
elements based on their ancestors, descendants, or siblings. That is, it selects
elements based on their context or their relation to other elements in the
document tree. While some of these contextual selectors are used relatively
infrequently, almost all web authors find themselves using descendant
selectors.

% Hands-on Exercises I.ab 4
Exercise

Contextual Selectors

A descendant selector matches all elements that are contained within another
element. The character used to indicate descendant selection is the space
character. Figure 4.7 illustrates the syntax and usage of the syntax of the
descendant selector.

context selected element

b ! 1R

div p{ .} #main div p:first-child { .. }
Selects a <p= element Selects the first <p> element
somewhere somewhere within a <div> element
within a <div> element that is somewhere within an element

with an id="main"

Figure 4.7 Syntax of a
descendant selection

Figure 4.7 Full Alternative Text

Table 4.6 describes the other contextual selectors.

Table 4.6 Contextual Selectors

Selector

Matches Example

div p
A specified element

that is contained Selects a <p> element that is
Descendant somewhere within contained somewhere within a
another specified <div> element. That is, the <p>
element. can be any descendant, not just
a child.
div>h2

Child

Adjacent
sibling

General
sibling

A specified element

thatis a ‘d}rect child of Selects an <h2> element that is
the specified element. a child of a <div> element.

A specified element
that is the next sibling
(i.e., comes directly
after) of the specified
element.

Selects the first <p> after any
<h3>.

o h3~
A specified element P

that shares the same gqjacts all the <p> elements

parent as the specified ¢+ chare the same parent as
element. the <h3>.

Figure 4.8 illustrates some sample uses of a variety of different contextual

selectors.

<body>
<nav=
<yl>

_lul a:link { color: blue; } Germany</1i>

<g href="#">United States</1i>

_{ <1i»Canada</11>

#main time { color: red; }

<ful=

</nay>

<div id="main"> R
Comments as of <time>2016-12-25¢</time>
<diva .

#main>time { color: purple; }

— <p>By Ricardo on <time>2016-05-23</time></p>
<p>Easy on the HDR buddy.</p>
</divz

#main div p:first-child { <hr/>

color: green; -
| <div> "

L <p>By Susan on <time>2016-11-18</time></p>
<p>I Tove Central Park.</p>
</div>
<hr/>
</div=
<footer>
e
| <lisHome | </11>
| Browse | </

</footer>
</body>

Figure 4.8 Contextual selectors
in action

Figure 4.8 Full Alternative Text

L“yNote

You can combine contextual selectors with grouped selectors. The comma is
like the logical OR operator. Thus, the grouped selector:

div#main div time, footer ul 1i { color: red; }

is equivalent to:

div#main div time { color: red; }
footer ul 1i { color: red; }

4.5 The Cascade: How Styles
Interact

In an earlier Pro Tip in this chapter, it was mentioned that in fact there are
three different types of style sheets: author-created, user-defined, and the
default browser style sheet. As well, it is possible within an author-created
stylesheet to define multiple rules for the same HTML element. For these
reasons, CSS has a system to help the browser determine how to display
elements when different style rules conflict.

«« Hands-on Exercises I.ab 4
Exercise

The CSS Cascade

The “Cascade” in CSS refers to how conflicting rules are handled. The visual
metaphor behind the term cascade is that of a mountain stream progressing
downstream over rocks (and not that of a popular dishwashing detergent).
The downward movement of water down a cascade is meant to be analogous
to how a given style rule will continue to take precedence with child elements
(i.e., elements “below” in a document outline as shown in Figure 4.3).

CSS uses the following cascade principles to help it deal with conflicts:
inheritance, specificity, and location.

4.5.1 Inheritance

Inheritance is the first of these cascading principles. Many (but not all) CSS
properties affect not only themselves but their descendants as well. Font,

color, list, and text properties (from Table 4.1) are inheritable; layout, sizing,
border, background, and spacing properties are not.

Figures 4.9 and 4.10 illustrate CSS inheritance. In the first example, only
some of the property rules are inherited from the <body> element. That is,
only the body element (thankfully!) will have a thick green border and the
100-px margin; however, all the text in the other elements in the document
will be in the Arial font and colored red.

body {
font-family: Arial; €—— Inherited
<html> color: red; Inherited
border: 8pt solid green; «————— Not inherited
/\ margin: B0px; Not inherited
<head> cbody>
<meta> <title> <h1> <h2> wl> <hd> <> < <diye <div> <p>
£lja €] <3> <p> <p> <p> <p> <gmallz

& - C K A fguedl-Ddhn

IShare Your Travels

INew York - Central Park

<time> <time>

+ Dipseripson
L r'l.'l L]

JDescription

s phote of Conservatory Fond in Cantral Park New York City was taken on

Figure 4.9 Inheritance

Figure 4.9 Full Alternative Text

<html> div {

font-weight: bold; €——— Inherited
margin: 50px; €——————— Not inherited
border: 1pt solid green; <—— Not inherited

<head> <body>

/\W

<meta> <title> <hi> <h2> <h3> <p> <p <div> <dive <p>

/\ A /N

<lis <] 23> <p> <p> <p> <p> <small>

€00 f A Stk b &
Reviews <time> <time>

By Ricardo om 2006 05.13
Eaey on the HOR buddy.

By Sutam on 20161118

B hive Central Park

Figure 4.10 More inheritance

Figure 4.10 Full Alternative Text

In the second example in Figure 4.10 , you can assume there is no longer the
body styling but instead we have a single style rule that styles all the <div>
elements. The <p> and <time> elements within the <div> inherit the bold
font-weight property but not the margin or border styles.

However, it is possible to tell elements to inherit properties that are normally
not inheritable, as shown in Figure 4.11 . In comparison to Figure 4.10 ,
notice how the <p> elements nested within the <div> elements now inherit
the border and margins of their parent.

T
Lr]
=
m

Reviews

By Rieardn an Hi 60518

Eavw o the HDR bugddy,

By Swsam om 2006-10-18

1 laiw Contral Park,

div {
font-weight: bold;
margin: S50px; <
border: 1pt solid green; €—

}

p{
border: inherit;
margin: inherit,

}

<h3>Reviews</h3>

<dive
<p>By Ricardo on <time>2016-05-23</time></p>
<p>Easy on the HDR buddy.</p>

<[div>

<hr/=

<dive
<p>By Susan on <time>2016-11-18</time></p>
<p>I love Central Park.</p>

</dive

<hr /=

Figure 4.11 Using the inherit

value

Figure 4.11 Full Alternative Text

4.5.2 Specificity

Specificity is how the browser determines which style rule takes precedence
when more than one style rule could be applied to the same element. In CSS,
the more specific the selector, the more it takes precedence (i.e., overrides the

previous definition).

l.:llNote

Most CSS designers tend to avoid using the inherit property since it can
usually be replaced with clear and obvious rules. For instance, in Figure 4.11
, the use of inherit can be replaced with the more verbose, but clearer, set of
rules:

div {
font-weight: bold;

}
p, div {
margin: 50px;
border: 1pt solid green;

}

Another way to define specificity is by telling you how it works. The way
that specificity works in the browser is that the browser assigns a weight to
each style rule; when several rules apply, the one with the greatest weight
takes precedence.

In the example shown in Figure 4.12 , the color and font-weight properties
defined in the <body> element are inheritable and thus potentially applicable
to all the child elements contained within it. However, because the <div> and
<p> elements also have the same properties set, they override the value
defined for the <body> element because their selectors (<div> and <p>) are
more specific. As a consequence, their font-weight is normal and their text is
colored either green or magenta.

O I

font-weight: bold; <p>Reviews</p>
color: red, <div>
} y nananany » <p>By Ricardo on <time>2016-05-23</time></p>
prsseRa > <p>Easy on the HOR buddy.</p>
div { 0 » This text is not within a p element.
font-weight: normal; 5 </div>
color: magenta; i <hr/>
} :
: <div>
P { ‘:__ """"" » cp;\B}r Susan on qtimepZU‘!ﬁ_‘]"l_1B(f‘t1me){}’p>
color: green; Kisdiaaid > <p>I love Central Park.</p>
} </div>
<hr/>
Tagt (= == ~
color: blue; T <div>
} - <p class="last">By Dave on <time>2016-11-24</t{ime></p>
__________ oy <p class="last" id="verylast">Thanks for posting.</p>
Pvirylagt p= it </div>
color: orange! <hr/>
font-size: 16pt; </body>
} Sarg Tins
& 5 @R 9 Figuiedd-12 b B

<body>

This text is not within a p element.

This text is not within a p element.
Reviews

By Ricardo on 2016-05-23

Easy on lhe HDR buckdy,

[us text 18 not within a p element

Hy Susan on 2016-11-18

I love Central Park

H." Dave on 2016-11-24

Figure 4.12 Specificity

Figure 4.12 Full Alternative Text

As you can see in Figure 4.12 | class selectors take precedence over element

selectors, and id selectors take precedence over class selectors. The precise
algorithm the browser is supposed to use to determine specificity is quite
complex.6 A simplified version is shown in Figure 4.13 .

element selector «———

descendant selector
(elements only)

o overrides

—— class and attribute «<——
selectors

overrides 9

— id selector

o overrides

id +
— additional «—
selectors

overrides o

inline style
attribute

div {
color: green,

}

o overrides

div form {
color: orange;

)

.example {
color: blue;
!
a[href$=".pdf"] {
color: blue;

}

#firstExample {
color: magenta;

}

div #firstExample {
color: grey;

}

A higher specificity value

overrides lower specificity

values.

Specificity Value
0001

0002

0010

0100

0101

<div style="color: red;"> 1000

Figure 4.13 Specificity
algorithm

Figure 4.13 Full Alternative Text

4.5.3 Location

Finally, when inheritance and specificity cannot determine style precedence,
the principle of location will be used. The principle of location is that when
rules have the same specificity, then the latest are given more weight. For
instance, an inline style will override one defined in an external author style
sheet or an embedded style sheet. Similarly, an embedded style will override
an equally specific rule defined in an external author style sheet if it appears
after the external sheet's <1ink> element. Styles defined in external author
style sheet X will override styles in external author style sheet Y if X's
<link> element is after Y's in the HTML document. Similarly, when the
same style property is defined multiple times within a single declaration
block, the last one will take precedence.

23Pro Tip
The algorithm that is used to determine specificity of any given element is

defined by the W3C as follows.

e First count 1 if the declaration is from a “style” attribute in the HTML, 0
otherwise (let that value = a).

e Count the number of ID attributes in the selector (let that value = b).

e Count the number of class selectors, attribute selectors, and pseudo-
classes in the selector (let that value = c).

e Count the number of element names and pseudo-elements in the selector
(let that value = d).

¢ Finally, concatenate the four numbers a+b+c+d together to calculate the
selector's specificity.

The following sample selectors are given along with their specificity value.

<tag style=“color: red”> 1000
body .example 0011
body .example strong 0012
div#first 0101
div#first .error 0111
#footer .twitter a 0111
#footer .twitter a:hover 0121

body aside#left div#cart strong.price 0214

It should be noted that in general you don't really need to know the specificity
algorithm in order to work with CSS. However, knowing it can be invaluable
when one is trying to debug a CSS problem. During such a time, you might
find yourself asking the question, “Why isn't my CSS rule doing anything?
Why is the browser ignoring it?” Quite often the answer to that question is
that a rule with a higher specificity is taking precedence.

Figure 4.14 illustrates how location affects precedence. Can you guess what
will be the color of the sample text in Figure 4.14 ?

D
£QO0D

Browser's
B default style
settings b

b

user-styles.css #example {

o overrides color: green;

h

overrides e <head> /

<link rel="stylesheet" href="stylesA.css" />
<link rel="stylesheet" href="stylesWW.css" /> _ omemdes

overrides o <style> \ﬁ
ftexample { : -

4 ik al example
color: orange; *—|°ovcrridos color: blue;
color: magenta, ———!)

1

</style>

</head> i
overrides

<body> o

<p id="example" style="color: red;">

sample text

</p>
</hody>

Figure 4.14 Location

Figure 4.14 Full Alternative Text

The answer to the question is: The color of the sample text in Figure 4.14 will
be red. What would be the color of the sample text if there wasn't an inline
style definition?

It would be magenta.

e23Pro Tip

There is one exception to the principle of location. If a property is marked
with !important (which does not mean NOT important, but instead means
VERY important) in an author-created style rule, then it will override any
other author-created style regardless of its location. The only exception is a
style marked with !important in a user style sheet: such a rule will override
all others. Of course very few users know how to do this, so it is a pretty
uncommon scenario.

4.6 The Box Model

In CSS, all HTML elements exist within an element box shown in Figure
4.15 . In order to become proficient with CSS, you must become familiar

with the element box.

margin

background-color/background-image of element’s parent

I

I

I

I

: border

| padding

| A

: < width Vy —
I

E height
|

: element content area

| v

: background-color/background-image of element
|

I

I

|

I

I

I

Every CSS rule begins with a selector. The selector identifies
which element or elements in the HTML document will be
affected by the declarations in the rule. Another way of
thinking of selectors is that they are a pattern that is used

by the browser to select the HTML elements that will receive

Figure 4.15 CSS box model

Figure 4.15 Full Alternative Text

4.6.1 Background

As can be seen in Figure 4.15 , the background color or image of an element
fills an element out to its border (if it has one, that is). In contemporary web
design, it has become extremely common to use CSS to display purely
presentational images (such as background gradients and patterns, decorative
images, etc.) rather than using the element. Table 4.7 lists the most
common background properties.

Table 4.7 Common
Background Properties

Property Description

A combined shorthand property that allows you to
set multiple background values in one property.

background While you can omit properties with the shorthand, do
remember that any omitted properties will be set to
their default value.

Specifies whether the background image scrolls with
background - . . .
attachment the document (default) or remains fixed. Possible
values are: fixed, scroll.

background- Sets the background color of the element. You can
color use any of the techniques shown in Table 4.2 for
specifying the color.

Specifies the background image (which is generally
a jpeg, gif, or png file) for the element. Note that the
URL is relative to the CSS file and not the HTML.
CSS3 introduced the ability to specify multiple
background images.

Specifies where on the element the background

background -
image

image will be placed. Some possible values include:
bottom, center, left, and right. You can also
supply a pixel or percentage numeric position value
as well. When supplying a numeric value, you must
supply a horizontal/vertical pair; this value indicates
its distance from the top left corner of the element, as
shown in Figure 4.16 .

Determines whether the background image will be

repeated. This is a common technique for creating a
background- . e e .
repeat tiled background (it is in fact the default behavior),

as shown in Figure 4.17 . Possible values are:

repeat, repeat-x, repeat-y, and no-repeat.
background- New to CSS3, this property lets you modify the size
size of the background image.

background -
position

background-image: url(../images/backgrounds/body-background-tile.gif)
background-repeat: repeat;

background-repeat: no-repeat; background-repeat: repeat-y; background-repeat: repeat-x;

Figure 4.16 Background repeat

Figure 4.16 Full Alternative Text

€ 5 0 LineglhlTnl £

50px

<— 300px

body {
background: white url(../images/backgrounds/body-background-tile.qgif) no-repeat;
background-position: 300px 50px;

}

Figure 4.17 Background
position

Figure 4.17 Full Alternative Text

« Hands-on Exercises I.ab 4
Exercise

Background Style

4.6.2 Borders

Borders provide a way to visually separate elements. You can put borders
around all four sides of an element, or just one, two, or three of the sides.
Table 4.8 lists the various border properties.

Table 4.8 Border Properties

Property Description

A combined shorthand property that allows you to set
the style, width, and color of a border in one property.

border The order is important and must be:

border-style border-width border-color

Specifies the line type of the border. Possible values are:
border -

style solid, dotted, dashed, double, groove, ridge,
inset, and outset.

The width of the border in a unit (but not percents). A

border -)

width variety of keywords (thin, medium, etc.) are also
supported.

border - . .

color Lhe color of the border in a color unit.

border - .

rg; iﬁ; The radius of a rounded corner.

border - .

irc':;ggr The URL of an image to use as a border.

Border widths are perhaps the one exception to the general advice against
using the pixel measure. Using em units or percentages for border widths can

result in unpredictable widths as the different browsers use different
algorithms (some round up, some round down) as the zoom level increases or
decreases. For this reason, border widths are almost always set to pixel units.

4.6.3 Margins and Padding

Margins and padding are essential properties for adding white space to a web
page, which can help differentiate one element from another. Figure 4.18
illustrates how these two properties can be used to provide spacing and
element differentiation.

L2 & 9, Ereghl-12hiemi

[Ervery 5% rufie begine wieh @ selecion. The selecton iemfics mhich sl or themests in e HTML
docuno will be afnoied by e decliratom o the rule. Another ey of Saskong of selecton i that
Uy e o pumem winils s med by @1 browser be select the WTMEL srmernts it will recese

It

Every OS5 e bemai wieh 3 oebocion, The selector idenahics wiach clnans o dinmeti inde HTML
docienens vl be sfroted b fe decbpaton o the rile Anofie = o of Saskirg of soinclond 1 thal
thery e & pommewn which i weed by e browser o selecn dee HTML clrmernes dhiw will pecsivs

Ervery OS5 rule bt wirh & deleowoe. The seloctor idemtier wineh clemo o demenrs e HTML
diocuners wil be sfemedbe de decliramorm i the rule Anofser way of Susineg of selociors i that
they e & pamern wihich @ sead by e browser o select the HTRE, slamersy thot will pecares

L C S 0312 homil

Every C55 rabe B with 2 sclectar The ackecics idoutifirs whh rinmers or slesurnty in the
MITML desoussess will be mfecid by the declaranods it pule Ascmiey wiry of Sunlong of
salaoiors i s ey e A pasemn which 8 med by the browsay v sebect e HTML elemenis
thal wil recone

=

p {

border: solid 1pt red;
margin: 0;
padding: 0;

P {

border: solid 1pt red;
margin: 30px;
padding: 0;

Frrry U85 rade Brpmn with 2 azlechar The aelecioe identfirs bk demers or clesumi in the
HTML doousmens wil be affecied by the declaraiionms e mie Aol wary of Suong of
slecions i et ey are ajpafiem which & med by the o & pelect dhe HTML dements
that vl recene

Every ©55 rube g with a selector. The pelecion idemties whch demtor of clozienta in the
MTML dosoumsond wil be alfecied by ihe doclarabion e pue Asodley wiy of Sunkang of
seoctons i e ey e & pamern which i wied by the beowior & selinc e HTML dewonts
_ﬁﬂb\]:#!fﬁr

Ty O848 e bt ith & siledtoi The aslecmsd sdomthrs shrh dbitiost o
cloments i See HTML docement wil br affectied by the drolay st in e pde
At wan of Bebkreg of selectors o it they e 5 patines s bk o med by i
rmne w nebect e HTML dements thsi will receive

Every 55 mube bapne with a selector. The selector sdontifies which chenveai or
lementi i ed HTML doconent will be alfeciod by thi declaisioe it e
Agodtey wary of dskcng of selectons & hat they we a pansm whch & wed by e
bprmper o select e HTML slements thal will recaie

vy C5F5 walr b with a sgloctor, The solecsor adomtiies mibick chomout or
e o ML dewrerment will b pflesied by the decls seed 1 e pae
Aot war off Bmking of selectors is that they ae o pafinon shch s wed by the
Ewonter 5 seloce tie HTML dements dun will reveive

L S 9 Estingld-17Mmi é

P {

border: solid 1pt red;
margin: 30px;
padding: 30px;

Figure 4.18 Borders, margins,

and padding provide element
spacing and differentiation

Figure 4.18 Full Alternative Text

«4 Hands-on Exercises I.ab 4
Exercise

Borders, Margins, and Padding

As you can see in Figures 4.15 and 4.18, margins add spacing around an
element's content, while padding adds spacing within elements. Borders
divide the margin area from the padding area.

There is a very important thing to notice about the margins in Figure 4.18 .
Did you notice that the space between paragraphs one and two and between
two and three is the same as the space before paragraph one and after
paragraph three? This is due to the fact that adjoining vertical margins
collapse.

Figure 4.19 illustrates how adjoining vertical margins collapse in the

browser. If overlapping margins did not collapse, then margin space for &
would be 180 px (90 px for the bottom margin of the first <div> + 90 px for
the top margin of the second <div>), while the margins for © and © would
be 100 px. However, as you can see in Figure 4.19 , this is not the case.

the dechration: in fhe e

the declrabon: i Se ok

9 I%px

3] I‘:‘iﬂpx

In 55, e sdormyg magms of teo o maove boues (b

;
;

;

ks mighi ov migh noi be shbbngs)h cam combee o form 3 sngle mugn
Maryion thet bt way ave i 4o colpie, mnd ot vealing combied margn i called 1 coligpsed mirgin

[& & g1 el
¢50px
Every C55 nie bepas with a selector. The seloner adeatbees whach eheest of dements it HTML docusess will be affecaed by

50px o

Every C55 rade bogmn wtha selector. The selncior adeatiies whack dhemest or dements mthe HTML docsment =il be affecied by

50px

50px

¢50px o

I 5%, Wt aedonrd s of 190 00 iooove Lones (ol il o vl i e s} ol oot B P sl il
Marpitn ot combaee i way are s 10 collapse, md e pe I:r-ri':-'rri'rr\: mearan s called a coliapesd margn

50px

=

Figure 4.19 Collapsing vertical

margins

Figure 4.19 Full Alternative Text

<div>
<p>Every CSS rule ...</p>
<p>Every CSS rule ...</p>
</div>
<div>

<p>In CSS, the adjoining ... </p>
<p>In CSS, the adjoining ... </p>
</div>
div {

border: dotted 1pt green;,

padding: 0;
margin: 90px 20px;

P {
border: solid 1pt red;

padding: 0;
margin: S0px 20px;
}

The W3C specification defines this behavior as collapsing margins:

In CSS, the adjoining margins of two or more boxes (which might or
might not be siblings) can combine to form a single margin. Margins
that combine this way are said to collapse, and the resulting combined
margin is called a collapsed margin.

What this means is that when the vertical margins of two elements touch,
only the largest margin value of the elements will be displayed, while the

smaller margin value will be collapsed to zero. Horizontal margins, on the
other hand, never collapse.

To complicate matters even further, there are a large number of special cases
in which adjoining vertical margins do net collapse (see the W3C
Specification for more detail).

From our experience, collapsing (or not collapsing) margins are one of the
main problems (or frustrations) that our students face when working with
CSS.

4.6.4 Box Dimensions

Box dimensions (i.e., the width and height properties) also frequently
trouble new CSS authors. Why is this the case?

“yNote

With border, margin, and padding properties, it is possible to set the
properties for one or more sides of the element box in a single property, or to
set them individually using separate properties. For instance, we can set the
side properties individually:

border-top-color: red, /* sets just the top side */

border-right-color: green; /* sets just the right side */
border-bottom-color: yellow, /* sets just the bottom side *
border-left-color: blue, /* sets just the left side */

Alternately, we can set all four sides to a single value via:

border-color: red; /* sets all four sides to red */

Or we can set all four sides to different values via:

border-color: red green orange blue;

When using this multiple values shortcut, they are applied in clockwise order
starting at the top. Thus the order is: top right bottom left as shown in Figure
4.20 . The mnemonic TRouBLe might help you memorize this order.

TRBL (Trouble)

Top
border-color: top right bottom left;

Left Right

border-color: red green orange blue;

Bottom

Figure 4.20 CSS TRBL
(Trouble) shortcut

Figure 4.20 Full Alternative Text

Another shortcut is to use just two values; in this case the first value sets top
and bottom, while the second sets the right and left.

border-color: red yellow; /* top+bottom=red, right+left=yellow

One reason is that only block-level elements and nontext inline elements such
as images have a width and height that you can specify. By default (in CSS
this is the auto value), the width of and height of elements is the actual size
of the content. For text, this is determined by the font size and font face; for
images, the width and height of the actual image in pixels.

Since the width and the height only refer to the size of the content area, the
total size of an element is equal to the size of its content area plus the sum of
its padding, borders, and margins. This is something that tends to give
beginning CSS students trouble. Figure 4.21 illustrates the default content -
box element sizing behavior. It also shows the newer alternative border -box
approach, which is perhaps more intuitive, but which requires vendor
prefixes for it to work on all recent browsers.

div {
box-sizing: content-box;
width: 200px;
height: 100px;
padding: Spx;
margin: 10px;
border: solid 2pt black; |True elementwidth=104+2+5+200+5+ 2+ 10=234 px

} True element height =10+ 2 +5+ 100+ 5+ 2 + 10 = 134 px
E i
| |
| |
| |
| |
| |
| |
| [
| 10px |5 200px 1 Al 100x |

e Pt p——
| 2 2 |
: 100px :
| |
| |
| |
| [
| k J |
| |
| |
| |
| |
| |
| I
| |
| |

div {

box-sizing: border-box; | True element width = 10 + 200 + 10 = 220 px

} True element height = 10 + 100 + 10 = 120 px
[T T L L L s i
| |
| |
| |
| |
| 3 |
| |
| |
| |
| |
| I
| |
: 100px :
| |
| |
| [
| |
| [
| |
| |
' 40 ‘ 10px |
Lo AR R 0
Irq' 200px :
| |
| |

Figure 4.21 Calculating an
element's true size

Figure 4.21 Full Alternative Text

For block-level elements such as <p> and <div> elements, there are limits to
what the width and height properties can actually do. You can shrink the
width, but the content still needs to be displayed, so the browser may very
well ignore the height that you set. As you can see in Figure 4.22 , the default
width is the browser viewport. But in the second screen capture in the image,
with the changed width and height, there is not enough space for the browser
to display all the content within the element. So while the browser will
display a background color of 200x100 px (i.e., the size of the element as set
by the width and height properties), the height of the actual textual content
is much larger (depending on the font size).

:‘

'S

&= @ 9 Esngli-11m
|

vy C85 e bepma wilh o aslecter The e ademiblies which elemenl o slmmrs i S HTML docemest wil
Ih&d{dhtmihd&M:ﬂdﬁh:gd’ldﬁmhﬁlhaeapﬂnluh‘limd
| oy e Brcvwser b debect the HTWT slomrati ot mll fovess

p{
background-color: silver;
)

p{
background-color: silver;

width: 200px;
height: 100px;

}

Figure 4.22 Limitations of

height property

Figure 4.22 Full Alternative Text

It is possible to control what happens with the content if the box's width and
height are not large enough to display the content using the overflow
property, as shown in Figure 4.23 .

overflow: visible:

Every C88 sl borigans withi &
sebresi Tl wrdoctin alretied
whach ol o clesoees i the
HTNVL documen will be
wifiected by thr Arbwstion n
e rule Anoder way of dadong
of seleciors is dit deey are 2
pottemn whick i e by et

b oo b LETLT

Every C55 nie bepms witha
selector. The selector idemBen
which dement of slementy m e
HTML docoment will be
afected by the declemtioss i

' O O, liniegt-11 Mmi

Every (55 e begs wih 5 *
selecon. The selector .

ekt whi or . i
b bt overflow: auto;

1 Tour Tewon
c q

stingld-1Lhtm

Lz

Every €45 rulle bopis witha -
pelenor The uebector
Momics whach choment o
elemrnts s Gor HTML
domeat wll be il by -

Figure 4.23 Overflow property

Figure 4.23 Full Alternative Text

While the example CSS in Figure 4.22 uses pixels for its measurement, many
contemporary designers prefer to use percentages or em units for widths and
heights. When you use percentages, the size is relative to the size of the
parent element, while using ems makes the size of the box relative to the size

of the text within it. The rationale behind using these relative measures is to
make one's design scalable to the size of the browser or device that is viewing
it. Figure 4.24 illustrates how percentages will make elements respond to the
current size of the browser.

| <body>
<div class="pixels">
Pixels - 200px by 50 px
</div=>
<div class="percent">
Percent - 50% of width and height
</div>
</body>

<style>

htm1,body {
margin:0;
width:100%;
height:100%;
background: silver;

}

pixels {
width:200px;
height :50px;
background: teal;

}

.percent {
width:50%;
height :50%;
background: olive;

}

<hbody>

<div class="parentFixed">
parent has fixed size
<div class="percent">

PERCENT - 50% of width and height

</div>

</div>

<div class="parentRelative">
<strong=parent has relative size
<div class="percent">

.parentFixed {
width:400px;
height:150px;
background: beige;

}

.parentRelative {
width:50%;
height :50%;
background: yellow,

} PERCENT - 50% of width and height
</style> </div>
</div>
</body>

& & € 9 ligling03-15hm
rent bas fived size

50% of parent (= 200px)
aron b elive size

50% 0%

Figure 4.24 Box sizing via
percents

Figure 4.24 Full Alternative Text

One of the problems with using percentages as the unit for sizes is that as the
browser window shrinks too small or expands too large (for instance, on a
wide-screen monitor), elements might become too small or too large. You
can put absolute pixel constraints on the minimum and maximum sizes via
the min-width, min-height, max-width, and max-height properties.

EDive Deeper

Vendor prefixes are a way for browser manufacturers to add new CSS
properties that might not be part of the formal CSS specification. The prefix
for Chrome and Safari is -webkit-, for Firefox it is -moz-, for Internet
Explorer it is -ms-, and for Opera -o-. Microsoft Edge does not define its own
vendor prefix, but for compatibility reasons, it supports the -webkit prefix.
Thus, to set the box-sizing property to border-box, we would have to write
something like this:

-webkit-box-sizing: border-box;

-moz-box-sizing: border-box;

/* Opera and IE support this property without prefix */
box-sizing: border-box;

There is currently a fair degree of controversy about vendor prefixes. On the
one hand, they let web authors take advantage of a single browser's support
for a new CSS feature (whether part of the W3C standard or not) without
waiting for it to become standard across all browsers. But on the other hand,
the proliferation of vendor prefixes has made contemporary CSS files
significantly more complicated.

More seriously, there has been a great deal of concern in the browser
community that many developers are only adding webkit vendor prefixes; as
a consequence, a site on Chrome and Safari (i.e., the main webkit browsers)
may look better than competing browsers.

In the spring of 2012, developers at Mozilla and Microsoft announced that
their browsers were going to support the -webkit- prefix. This had many
developers worried that over time Google and not the W3C, would turn into
the de facto CSS standard maker moving forward. Happily, more recently,
developers at Google and FireFox are endeavoring to fade prefixes away.
Instead of making new “experimental” features available via vendor prefixes,
moving forward, browsers will instead only make such new features available
if the user enables the experimental features flag.

e23Pro Tip

Developer tools in current browsers make it significantly easier to examine
and troubleshoot CSS than was the case a decade ago. Figure 4.25 illustrates
how you can use the various browsers' CSS inspection tools to examine, for
instance, the box values for a selected element.

Chrome - Inspect Element Firefox - Inspect

+ @ il s

| ST PR ——— p—— e g—pe w—— ¥ res——T Ty | 1
o i B O

Fomr, (5% nir begma o) g b T sl iewifies < bk riewarsd oo et 0 e WY B wewd ol e s el
e e LTI

| s @ Lswra Hl—-n Uy L!""" .{_ Frha \:Lu- Ly
B

2, | 3%, e bt ow o oof 1in 10 e b, |l i 0 o)t) o o e 1

s g magn Mag b cader e e ot i vllane al e erleg casles]
ol o pun
- Opera - Inspect Element
] q - ‘ &

Foory CAE e g of
e eliied by e e

Fomer £ i e []
ol b s g A Farry 50 swin baglun i o

Figure 4.25 Inspecting CSS
using developer tools within
modern browsers

Figure 4.25 Full Alternative Text

Another way to experiment and learn CSS is to use an online CSS
“playground,” such as cssdesk.com or codepen.io. These sites allow you to
type in CSS and see its effect immediately.

http://codepen.io

4.7 CSS Text Styling

CSS provides two types of properties that affect text. The first we call font
properties because they affect the font and its appearance. The second type of
CSS text properties are referred to here as paragraph properties since they
affect the text in a similar way no matter which font is being used.

Many of the most common font properties as shown in Table 4.9 will at first
glance be familiar to anyone who has used a word processor. There are,
however, a range of interesting potential problems when working with fonts
on the web (as compared to a word processor).

Table 4.9 Font Properties

Property

font

font -
family

font -
size
font -
style

font -
variant

Description

A combined shorthand property that allows you to set
the family, style, size, variant, and weight in one
property. While you do not have to specify each
property, you must include at a minimum the font size
and font family. In addition, the order is important and
must be:

style weight variant size font-family

Specifies the typeface/font (or generic font family) to
use. More than one can be specified.

The size of the font in one of the measurement units.

Specifies whether italic, oblique (i.e., skewed by the
browser rather than a true italic), or normal.

Specifies either small-caps text or none (i.e., regular
text).

font - Specifies either normal, bold, bolder, lighter, or a
weight value between 100 and 960 in multiples of 100, where
larger number represents weightier (i.e., bolder) text.

4.7.1 Font Family

The first of these problems involves specifying the font family. A word
processor on a desktop machine can make use of any font that is installed on
the computer; browsers are no different. However, just because a given font
is available on the web developer's computer, it does not mean that that same
font will be available for all users who view the site. For this reason, it is
conventional to supply a so-called web font stack, that is, a series of alternate
fonts to use in case the original font choice is not on the user's computer. As
you can see in Figure 4.26 , the alternatives are separated by commas; as
well, if the font name has multiple words, then the entire name must be
enclosed in quotes.

o Use this font as 9 If it isn't available,
the first choice. then use this one.

1

p { font-family: Cambria, Georgia, "Times New Roman", serif; |}

|| |

But if it is not available, 0 And if it is not available
then use this one. either, then use the
default generic serif font.

Figure 4.26 Specifying the font
family

Figure 4.26 Full Alternative Text

% Hands-on Exercises I.ab 4
Exercise

CSS Fonts

Notice the final generic font family choice in Figure 4.26 . The font-family
property supports five different generic families; the browser supports a
typeface from each family. The different generic font families are shown in

Figure 4.27 .

This
This
This
This
This

Generic
Font-Family
Name —~
serif serif
I_.I'\.,_,.’
: Without
sans-serif ("sans”) serif
In a regular,
1 In a monospace font, N proportionally-spaced
monospace T h 1S eachletterhasthe I S font, each letter has a
same width. variable width.
cursive
Decorative and cursive fonts
fantasy vary from system to system;

rarely used as a result.

Figure 4.27 The different font
families

Figure 4.27 Full Alternative Text

While there is no real limit to the number of fonts that one can specify with

the font-family property, in practice, most developers will typically choose
three or four stylistically similar fonts.

One common approach is to make your font stack contain, in this order, the
following: ideal, alternative, common, and then generic. Take for instance,
the following font stack:

font-family { “Hoefler Text”, Cambria, “Times New Roman”, serif;

You might love the appearance of Hoefler Text, which is installed on most
Macs, so it is your ideal choice for your site; however, it is not installed on
very many PCs or Android devices. Cambria is on most PC and Mac
computers and is your alternative choice. Times New Roman is installed on
almost all PCs and Macs so it is a safe common choice; but because you
would prefer Cambria to be used instead of Times New Roman, you placed
Cambria first. Finally, Android or Blackberry users might not have any of
these fonts, so you finished the font stack with the generic serif since all your
other choices are all serif fonts.

Websites such as http://cssfontstack.com/ can provide you with information
about how prevalent a given font is on PC and Windows computers, so you
can see how likely it is that ideal font is even installed.

Another factor to think about when putting together a font stack is the x-
height (i.e., the height of the lowercase letters, which is generally correlated
to the width of the characters) of the different typefaces, as that will have the
most impact on things such as characters per line and hence word flow.

4.7.2 Font Sizes

Another potential problem with web fonts is font sizes. In a print-based
program such as a word processor, specifying a font size is unproblematic.
Making some text 12 pt will mean that the font's bounding box (which in turn
is roughly the size of its characters) will be 1/6 of an inch tall when printed,
while making it 72 pt will make it roughly one inch tall when printed.
However, as we saw in Section 4.2.3, absolute units such as points and inches
do not translate very well to pixel-based devices. Somewhat surprisingly,

http://cssfontstack.com/

pixels are also a problematic unit. Newer mobile devices in recent years have
been increasing pixel densities so that a given CSS pixel does not correlate to
a single device pixel.

% Hands-on Exercises I.ab 4
Exercise

CSS Font Sizes

So while sizing with pixels provides precise control, if we wish to create web
layouts that work well on different devices, we should learn to use relative
units such as em units or percentages for our font sizes (and indeed for other
sizes in CSS as well). One of the principles of the web is that the user should
be able to change the size of the text if he or she so wishes to do so; using
percentages or em units ensures that this user action will “work,” and not
break the page layout.

When used to specify a font size, both em units and percentages are relative
to the parent's font size. This takes some getting used to. Figure 4.28
illustrates a common set of percentages and their em equivalents to scale
elements relative to the default 16-px font size.

<body> Browser’s default text size is usually 16 pixels

<p> 100% or lem is 16 pixels

<h3> 125% or 1.125em is 18 pixels
hz> 150% or 1.5em is 24 pixels

<> 200% or 2em 1s 32 pixels

/* using 16px scale */

<body>
body { font-size: 100%: } Browser's default text size is usually 16 pixels
p { font-size: 1em;)} '* 1.0 x 16 =16 */ <p>100% or 1em is 16 pixels</p=
h3 { font-size: 1.125em; } 1.25 x 16 = 18 */ <h3>125% or 1.125em 1s 18 pixels</h3>
h? { font-size: 1.5em; } 1.5x16 =24 " <h2>150% or 1.5em is 24 pixels</h2=
h1 { font-size: 2em; } 2x18=32"% <h1>200% or 2em is 32 pixels</hi>
</body=>

Figure 4.28 Using percents and
em units for font sizes

Figure 4.28 Full Alternative Text

While this looks pretty easy to master, things unfortunately can quickly
become quite complicated. Remember that percents and em units are relative
to their parents. Figure 4.29 illustrates how in reality it can quickly become
difficult to calculate actual sizes when there are nested elements. As you can
see in the second screen capture in Figure 4.29 , changing the <article>
element's size changes the size of the <p> and <h1> elements within it,
thereby falsifying their claims to be 16 and 32 px in size!

<hody>

<p>this is 16 pixels</p>
<h1>this is 32 pixels</h1>

<article»

<h1>this is 32 pixels</h1>
<p>this is 16 pixels</p>

<djyz

<h1>this is 32 pixels</h1>
<p>this is 16 pixels</p>

</div>
</article>

</body>

& -+ 0 O sieg)) 1300

i i I ok

this is 32 pixels
this is 32 pixels
this is 32 pixels

1 5 16 plcks

ait Vi Y
& 4 8 %igiegdl Linim

i i 1 ok
this is 32 pixels

this is 32 pixels

thi s 32 plich
|

= Kk

_ /" using 16px scale */

body { font-size: 100%; }
p { font-size: 1em; } /* 1 x 16 = 16px */
ht { font-size: 2em; } /* 2 x 16 = 32px */

WiSEE /¢ ysing 16px scale */

body { font-size: 100%; }

p { font-size: 1em; }

h1 { font-size: 2em; }

article { font-size: 79% } /" h1 =2 " 16 * 0.75 = 24px

SR | R 1S

| div { font-size: 75% } =218 "0.75"0.75
p=17*16"*0.75"*0.75

Figure 4.29 Complications in
calculating percents and em

units

2px */

18px
9px */

Figure 4.29 Full Alternative Text

For this reason, CSS3 now supports a new relative measure, the rem (for root
em unit). This unit is always relative to the size of the root element (i.e., the
<html> element). However, since early versions of Internet Explorer (prior to
IE9) do not support the rem units, you need to provide some type of fallback
for those browsers, as shown in Figure 4.30 . To muddy the picture even
more, some developers have begun to advocate again for using the pixel as
the unit of measure in CSS. Why? Because modern browsers provide built-in
scaling/zooming that preserve layout regardless of whether the CSS is using
pixels, ems, or rems.

* using 16px scale */
w# body { font-size: 100%; }

5| p
font-size: 16px; /* for older browsers: won't scale properly though */
this bs 32 pluels font-size: 1rem: /* for new browsers: scales and simple too */

this is 32 pivels }

s ht { font-size: 2em;)

[

article { font-size: 76% } /" h1 =2 " 16 * 0.75 = 24px
p=1°"16=16px */

div { font-size: 75% } [*h1=2"16"*0.75"*0.75 = 18px
p=17%16 = 16px */

Figure 4.30 Using rem units

Figure 4.30 Full Alternative Text

EDive Deeper

Over the past few years, the most recent browser versions have begun to
support the @font-face selector in CSS. This selector allows you to use a
font on your site even if it is not installed on the end user's computer. While
@font-face has been part of CSS for quite some time, the main stumbling

block has been licensing. Fonts are like software in that they are licensed and
protected forms of intellectual property.

Due to the ongoing popularity of open source font sites such as Google Web
Fonts (https://fonts.google.com) and Font Squirrel (http://
www.fontsquirrel.com/), @font - face seems to have gained a critical mass of
widespread usage.

The following example illustrates how to use Droid Sans (a system font also
used by Android devices) from Google Web Fonts using @font-face.

@font-face {

font-family: “Droid Sans”;

font-style: normal;

font-weight: 400;

src: local(“Droid Sans”), local(“DroidSans”),

url(http://themes.googleusercontent.com/static/fonts/droidsan

s-BiyweUPVOv-yRb-cjciBsXEYwM7FgeyaSgu71cLGO.woff)
format(‘woff’);

}

/* now can use this font */
body { font-family: “Droid Sans”, “Arial”, sans-serif; }

It should be noted that most developers use a much simpler approach than the
@font-face technique shown earlier. Instead of using font-face, an easier
alternative is to simply link or import the font. For instance, you can add the
following to your <head> section to use the Droid Sans font.

<link href="https://fonts.googleapis.com/css?family=Droid+Sans” r

An alternative to linking would be to add the following import inside one of
your CSS files:

@import url(https://fonts.googleapis.com/css?family=Droid+Sans);

The Google Fonts (see Figure 4.31) website provides an easy way to search
for fonts by different criteria; once you have found the font you want to use,
the site provides you with the preconstructed <link> element tag that you can
copy and then paste into your HTML file.

https://fonts.google.com
http://www.fontsquirrel.com/

000 /0omamwa tomuion x|\ Py
€ 0 | i hitps)ons.googe.comspecimen Droide SanTuelection limiys DroideSava apEee0@:

Your Selection Clear All

Dioid $ans (=)

EMBED CUSTOMIZE

Embed Font

To embed your selected fonts into a webpage, copy this code into the <head> of your
HTML document.

STANDARD @IMPORT
<1ink hrefa“https://fonts.googleapis.con/css?fandlysDroddeSans” rels"st

ylasheet™»

Specify In €SS
Use the following CSS rules o specify these families:

font-family: ‘Droid Sans', sans-serif;

For examples of how fonts can be added to webpages, see the getting started quide,

Figure 4.31 Using Google Fonts

Figure 4.31 Full Alternative Text

4.7.3 Paragraph Properties

Just as there are properties that affect the font in CSS, there are also a range
of CSS properties that affect text independently of the font. Many of the most
common text properties are shown in Table 4.10, and like the earlier font
properties, many of these will be familiar to anyone who has used a word

Processor.

Table 4.10 Text Properties

Property Description

letter- Adjusts the space between letters. Can be the value
spacing pormal or a length unit.

Specifies the space between baselines (equivalent to
line- leading in a desktop publishing program). The default
height value is normal, but can be set to any length unit. Can

also be set via the shorthand font property.

it;i é_ Specifies the URL of an image to use as the marker
image for unordered lists.
list Selects the marker type to use for ordered and

style- type Unordered lists. Often set to none to remove markers
when the list is a navigational menu or a input form.

Aligns the text horizontally in a container element in a
text-alignsimilar way as a word processor. Possible values are
left, right, center, and justify.
Specifies whether the text will have lines below,
text - through, or over it. Possible values are: none,
oration Underline, overline, line-through, and blink.

fdee Hyperlinks by default have this property set to
underline.

text- Specifies the direction of the text, left-to-right (1tr) or

direction right-to-left (rtl).

text- Indents the first line of a paragraph by a specific

indent amount.

text- A new CSS3 property that can be used to add a drop

shadow shadow to a text.

text- Changes the capitalization of text. Possible values are

transform gpe capitalize, lowercase, and uppercase.
vertical- Aligns the text vertically in a container element. Most

align common values are: top, bottom, and middle.

word- Adjusts the space between words. Can be the value
Spacing npormal or a length unit.

%« Hands-on Exercises I.ab 4
Exercise

CSS Paragraphs

One of the interesting new text properties in CSS3 is the text - shadow
property. As you can see in Figure 4.32 , the property takes four values: the x
and y offset in pixels, the size of the shadow's blur, and the color of the
shadow. The figure also illustrates the related box-shadow property, which
uses the same order of values as text -shadow.

Kirst,Shadoyy, .
m MW You will likely want the

shadow color to be partly

& Third Shadow Raiepard
o}

@

y offset shadow color
X of}‘set hru{size

@ text-shadow: 20px 20px 10px rgba(0,0,0,0.5);
e

€ text-shadow: 4px 4px 0 #5C6BCO,
8px 8px 0 #7986CB,
12px 12px 0 #9FABDA;

multiple shadows can be defined
(separated by commas)

e text-shadow: 0 1px 1px #1A237E;

o box-shadow: Opx Opx 30px #1A237E;

o
box shadows work in the

same way as text shadows

Figure 4.32 The shadow
properties

Figure 4.32 Full Alternative Text

4.8 Chapter Summary

Cascading Style Sheets are a vital component of any modern website. This
chapter provided a detailed overview of most of the major features of CSS.
While we still have yet to learn how to use CSS to create layout (which is
relatively complicated and is the focus of Chapter 7), this chapter has covered
a large percentage of the CSS that most web programmers will need to learn.

4.8.1 Key Terms

absolute units

attribute selector

author-created style sheets

box model

browser style sheets

cascade
class selector

collapsing